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Abstract
Developing autonomous agents capable of per-
forming complex, multi-step decision-making
tasks specified in natural language remains a sig-
nificant challenge, particularly in realistic settings
where labeled data is scarce and real-time ex-
perimentation is impractical. Existing reinforce-
ment learning (RL) approaches often struggle
to generalize to unseen goals and states, limit-
ing their applicability. In this paper, we intro-
duce TEDUO, a novel training pipeline for of-
fline language-conditioned policy learning in sym-
bolic environments. Unlike conventional methods,
TEDUO operates on readily available, unlabeled
datasets and addresses the challenge of generaliza-
tion to previously unseen goals and states. Our ap-
proach harnesses large language models (LLMs)
in a dual capacity: first, as automatization tools
augmenting offline datasets with richer annota-
tions, and second, as generalizable instruction-
following agents. Empirical results demonstrate
that TEDUO achieves data-efficient learning of
robust language-conditioned policies, accomplish-
ing tasks beyond the reach of conventional RL
frameworks or out-of-the-box LLMs alone.

1. Introduction
Motivation. Enabling AI agents to follow human-provided
natural language instructions is a critical step toward build-
ing intelligent systems that can perform complex, multi-step
tasks in dynamic environments. However, existing methods
often require vast quantities of annotated data or rely on
costly online interactions with the environment to train ef-
fective policies. Such requirements limit their scalability to
real-world scenarios where collecting annotated or interac-
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tion data is infeasible. Moreover, current RL-based agents
often struggle to generalize to new goals and environments
beyond their training data (Yang et al., 2023). These chal-
lenges underline the need for a change of focus in the area
of instruction-following agents: from reliance on online
interactions in environments with rich forms of feedback to
the learning of generalizable policies from unlabeled obser-
vational data. We illustrate the problem setting considered
with the following hypothetical scenario:

Imagine recording a human using their smartphone in
daily tasks, such as text messaging or calendar manage-
ment. How can we train an an AI assistant following
natural language instructions, e.g.“Book a restaurant
for 7 PM” or “Send an email to John.”, by just record-
ing the actions taken by the human and not having to
manually label each state or action recorded? How can
we make the learned policies generalize to commands
that have not been explicitly observed in the data?

Problem setting. We formalize our setup by framing it as
an offline language-conditioned policy learning problem.
We assume access to a pre-collected dataset of state-action
transitions, D consisting of triplets (x, a, x′), where x and
x′ belong to an observable state space X , and a represents
actions within an action space A. To enable the grounding
of the environment dynamics with the space of natural lan-
guage we additionally require: 1) that the individual states
and actions are representable in a textual format; 2) access to
an unordered list of goals, G expressed in natural language
that are plausibly achievable within the environment of inter-
est. We posit that both D and G are often easy to obtain by
simply recording agents interact with the environment and
curating a list of natural language commands corresponding
to the tasks typically performed within that environment.
Without constraining assumptions regarding the optimality
of the data collection policy with respect to the goals G,
nor access to the ground-truth state-transition dynamics or
rewards, our aim is to learn a language-conditioned policy,
π∗, that can determine optimal actions with respect to new
states x /∈ D and new goals g∗ ̸∈ Gtr, where Gtr ⊂ G is the
subset of goals used for training (see section 2 for details).

Challenges. The task of learning π∗ from D and Gtr alone
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might seem impossible without resorting to human supervi-
sion. We can immediately identify the following challenges:
C1) Unlabeled data. The dataset D lacks explicit labels
linking states x ∈ X to the goals g ∈ G. Nor does it include
any rewards indicating the optimality of actions in relation
to these goals. C2) Limited exploration. We are in an
offline setup with our knowledge of the environment dynam-
ics being constrained to the state-action transitions observed
in D. C3) Unknown data collection. We make no assump-
tions regarding the optimality of the data collection policy
with respect to the training or testing goals. The actions in
D could be entirely random or generated by policies aimed
at solving goals with an unknown relationship to those in G.
C4) Generalization. Beyond solving goals from Gtr and
taking optimal actions in previously observed states x ∈ D,
we want our agent to generalize to new states and language
commands corresponding to genuinely novel goal states.

Solution: LLMs & RL synergy. Recent advances in LLMs
offer a promising solution to these challenges. LLMs, pre-
trained on vast amounts of Internet data, possess the requi-
site prior knowledge to understand natural language and fol-
low simple instructions. However, while LLMs excel at gen-
eral language comprehension, their ungrounded knowledge
is insufficient for executing complex, multi-step decision-
making tasks in dynamic environments (Finn, 2024; Szot
et al., 2024). In this paper, we propose a novel, sequen-
tial training pipeline for offline language-conditioned pol-
icy learning—TEDUO: Teaching the Environment Dynam-
ics from Unlabeled Observations. As displayed in Fig-
ure 1, TEDUO distills knowledge of the environment dy-
namics into a pre-trained LLM through supervised fine-
tuning (SFT). This knowledge is obtained by learning opti-
mal policies with traditional RL, based on the offline dataset
augmented with LLM-generated labels and optional state
abstractions. Within TEDUO, LLMs fulfill the dual role of
cheap data enhancers and flexible generalizers, elevating
conventional RL to address challenges C1-C4.

Contributions. We categorize our contributions as having
a significant impact both for the fields of LLMs and RL.

Significance for the LLM Community: ▶ Grounding LLMs
for Multi-Step Decision Making: In line with previous
research, we demonstrate that standalone LLMs surprisingly
fail even in simple multi-step decision-making tasks. We
identify this limitation as stemming from the lack of ground-
ing in environment dynamics. Crucially, we show that such
grounding can be successfully achieved through SFT, en-
abling LLMs to integrate their background knowledge with
actionable policies. ▶ Core Skill Acquisition: Our analysis
reveals that fine-tuned LLMs acquire core decision-making
skills rather than merely memorizing optimal actions. This
highlights the potential of LLMs to generalize effectively to
previously unsolved tasks.

Significance for the RL Community: ▶ Offline Learning
from Low-fidelity Data: We introduce the first method to
enable learning generalizable language-conditioned policies
using only an unlabeled dataset of state-action transitions
and an unpaired set of language commands. This addresses
a critical bottleneck of conventional RL by eliminating the
need for expensive labeled datasets or real-time experimen-
tation. ▶ Enhanced Generalization and Data Efficiency:
TEDUO significantly improves both the generalization ca-
pacity and data efficiency of offline training, outperform-
ing conventional RL approaches. We provide empirical
evidence that our method scales effectively and facilitates
robust policy learning in symbolic environments.

2. Problem Formalism
We are given a dataset D of past interactions of an agent
acting according to a data collection policy πβ . This dataset
is represented as a collection of trajectories:

D = {τi}i∈I , τi = {(xt, at, xt+1)}Ti
t=0,

x0 ∼ ρ, xt+1 ∼ P (·|xt, at), at ∼ πβ(·|xt),

where P is the state transition function determining the
next state given an action at ∈ A and state xt ∈ X and
ρ represents the distribution of initial states. Alongside D,
we are given an unpaired set of goals G split into training
Gtr and testing Gtest subsets, describing in natural language
tasks an agent may attempt to solve within the environment.

Denoting by P(X ) the powerset of X , we assume there
exists a ground-truth mapping ϕ : G → P(X ) associat-
ing each goal g with a subset of the state space, ϕ(g) =
Xg ⊆ X . We say that g is achieved at time step t, if
xt lies in Xg.1. Then, the cumulative discounted reward:∑∞

t=0 γ
tRϕ(xt, at, xt+1; g), with Rϕ(xt, at, xt+1; g) =

1{xt+1 ∈ ϕ(g)} measures the optimality of actions taken
by an agent with respect to achieving the goal g, where
γ ∈ [0, 1) is the discount factor penalizing long sequences
of actions. We make no assumptions regarding the optimal-
ity of the data collection policy πβ with respect to Gtr and
thus, in what follows, we will view our pre-collected data as
an un-ordered collection of state-action-state transitions, in
short denoted as D = {(x, a, x′)}. We also do not assume
access to either of the ground-truth state-transition dynam-
ics P or the goal-to-state mapping ϕ, and consequently the
reward Rϕ. We only require that Gtr contains goals corre-
sponding to states that have been visited in D2.

The goal. Given D and Gtr, our objective is to learn a

1In this paper, we focus on simple goals representable as a
subset of the state space. This can be extended to more complex
goals using temporal logic which we leave for future work.

2In practice, Gtr can consist of a much larger set of training
goals. This set will be effectively reduced to the set of visited goals
after the first step of our training pipeline.
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Labeled dataset of abstract 
state transitions

: Collect the blue key

`: Open the yellow chest

: Go to the green door

Fine-tuned LLM as a general 
language-conditioned policy
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Minimal data 
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Figure 1. Overview of TEDUO. 1⃝ The unlabeled dataset of state-action transitions is pre-processed with LLM-automated hindsight
labeling and state abstraction. 2⃝ The resulting labeled dataset of abstract state transitions is used as the input to an offline RL algorithm
to learn the optimal goal-conditioned policies for the finite set of training goals. 3⃝ Knowledge of the optimal actions for each observed
training goal is distilled into a base LLM via SFT. The fine-tuned LLM acts as a language conditioned policy generalizing to previously
unseen states and language commands.

language-conditioned policy π∗ maximizing the expectation
of the cumulative discounted rewards averaged across all
g ∈ G. Crucially, π∗ should generalize to novel goals g /∈
Gtr and previously unseen states x /∈ D. We require that π∗

not only generalizes to synonymous language commands,
but also to previously unvisited goal-states.

3. The Method: TEDUO
To address the problem of learning language-conditioned
policies solely based on the inputs D and Gtr, we must
overcome the challenges C1-C4 outlined in the introduction.
While conventional RL methods are successful at learning
optimal policies within well-explored environments, they
typically require additional data labeling and are limited
in generalization to new, previously unseen language com-
mands and states. In contrast, although LLMs can under-
stand the meaning of sentences in natural language describ-
ing each goal, their skills lack grounding in relation to the
environment’s dynamics. Our pipeline, TEDUO, employs
LLMs to enhance conventional RL, effectively addressing
challenges C1-C4. TEDUO consists of three main steps:

1⃝ Construction of solvable MDPs. For each goal,
g ∈ Gtr, we construct an MDP by employing LLM-
automated hindsight labeling and optional state abstrac-
tion, addressing C1 and C2.

2⃝ Offline Policy Learning. After obtaining a labeled
dataset for each goal in g ∈ Gtr, we solve the set of
abstract MDPs using an out-of-the-box offline RL algo-
rithm. As a result, we obtain a set of learned policies
{πg : g ∈ Gtr}. The learned policies improve on naive
imitation learning, addressing C3.

3⃝ LLM supervised fine-tuning. We distill the knowledge
of the environment dynamics into a pre-trained LLM via
SFT, grounding the prior knowledge of the base LLM

and thus, enabling generalization to new, previously
unseen states and goals, addressing C2 and C4.

3.1. Step 1. Construction of solvable MDPs

Given that in many symbolic environments the original state
representationsX is high-dimensional, our pipeline contains
an optional state abstraction step that maps raw observations
x ∈ X to a goal-dependent abstract states sg ∈ Sg. For
each g ∈ Gtr we construct an MDP {Mg : g ∈ Gtr},
whereMg := (Sg,A, P g, Rg, ρ, γ), with P g standing for
the induced transition operator and Rg the reward function
with respect to the goal g approximated with scalable LLM-
based proxies. The state abstraction stage is entirely optional
and if not employed, we simply take Sg = X and P g = P .

3.1.1. STATE ABSTRACTION (OPTIONAL)

The goal of state abstraction is to reduce the size of the
state space by grouping together similar states in a way that
reduces the complexity of the MDP (Li et al., 2006). With
a well-designed abstraction, conventional RL algorithms
can learn more efficiently, requiring fewer samples of data,
which is particularly relevant in the offline setup. Let F :
X × G → Sg be an abstraction operator that given a goal
g maps a single observation x ∈ X to an abstract state
sg := F (x; g). This map should be such that |Sg| ≪ |X |.
In the context of text-based environments, we can leverage
natural language to guide state abstraction, so that the result-
ing abstract states contain only the goal-relevant information.
Given an environment that can be essentially represented in
a d-dimensional feature space, X = X 1 ×X 2 × . . .×X d,
we assume that only a relatively small subset of these vari-
ables is relevant for solving a specific goal g and an even
smaller subset is required to identify the goal states ϕ(g).
For details on the implementation of the LLM state abstrac-
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Goal    : Put the purple ball next to the purple chest

Abstract stateRaw state 

A goal object is on tile: 
(6,10)

A goal location is on tile: 
(20,14)

Inventory: []

The agent is currently at 
the tile: (13,10)

Abstracted features 
relevant for identifying the 
completion of the goal

Figure 2. An example of state abstraction for a grid world. The LLM-induced abstraction function reduces the complexity of the original
state by treating irrelevant distractors as walls, disregarding the color of opened doors, and identifying the object to be picked up (marked
with “O”) and its designated location (marked with “L”).

tion operator refer to Appendix C.4. Figure 2 shows an
example effect of state abstraction on a grid-world from the
BabyAI environment.

3.1.2. GOAL-CONDITIONED HINDSIGHT LABELING.

Following recent works (Kwon et al., 2023), we hypoth-
esize that the existing abilities of LLMs are sufficient to
perform the simple task of identifying whether a particu-
lar state belongs to the set of goal states ϕ(g) associated
with the goal description g. In order to perform hindsight
labeling of our dataset D, we wish to approximate ϕ, and
thus the reward Rϕ(·; g), with a prompted language model
LLMrwrd ≈ 1(g is achieved in sg), where we assign the rewards
in the abstracted spaces Sg instead of X . Given the large
number of goals and states, to reduce the number of LLM
calls needed, instead of using language models directly,
we train proxy reward models–lightweight neural networks
Rθ( · ; g) : Sg → {0, 1}–to predict the labels generated by
the prompted language model, LLMrwrd. Details can be
found in the Appendix C.5. The proxy rewards functions
provide a much more cost-effective way to perform hind-
sight labeling compared to labeling all states from D for
all goals from Gtr directly by LLM prompting let alone by
human annotators. Appendix B.5 shows that for the BabyAI
environment proxy rewards reach near 100% accuracy in
comparison to the ground truth rewards of the environment.

3.2. Step 2. Offline Policy Learning.

After the first step, for each goal g ∈ Gtr we obtain an of-
fline dataset Dg := {(sg, a, sg, rg)}. Given these data, we
can apply any offline reinforcement learning method to learn
optimal policies πg , for each goal g ∈ Gtr. In practice, how-
ever, to learn the goal-conditioned policies, the chosen RL
method should be scalable, as we must solve multiple MDPs,
one for each goal in Gtr. Therefore, in our instantiation, we
discard computationally intensive methods. Furthermore,
as the generalization to new states is tackled by the next

step, we do not require at this stage that the learned policies
generalize to unseen states. Given these considerations, we
primarily employ tabular Q-learning (Watkins & Dayan,
1992) to solve the set of abstract MDPs. To demonstrate
the flexibility of our approach, we also conduct experiments
with Deep Q-Learning (Appendix B.4) and filtered Behav-
ioral Cloning (Appendix B.1). At the end of this stage, we
obtain a set of learned policies {πg : g ∈ Gtr}. These
policies are limited to the set of training goals and the set of
states observed in D.

3.3. Step 3. Training the LLM as a generalizable policy

To enable generalization to previously unseen states, and
more importantly, generalization to novel goals, the final
step of our method distills the knowledge of the optimal ac-
tions per each abstract state and goal into a pre-trained LLM.
We build a supervised datasetDSFT consisting of goal com-
mands, initial abstract states and the sequence of optimal
actions with respect to the learned policies. Concretely,

DSFT :={(g, sg0, [a∗,g0 , . . . , a∗,gng
]) : g ∈ Gtr, sg0 ∈ Dg,

a∗,gt = argmax
a∈A

πg(a | sgt ),

sgt+1 = argmax
s∈Sg

P̂ g(s|sgt , a∗,gt )},

ng s.t. Rθ̂(s
g
ng+1; g) = 1},

where P̂ g is the empirical state transition function based on
the abstract datasets Dg, obtained in step 2. We then fine-
tune a pre-trained large language model on DSFT using
the standard next-word prediction objective. We integrate
description of the goal g and the state sg0 into a prompt and
set the sequence [a∗,g0 , . . . , a∗,gng

] as the expected completion.
We expect that the fine-tuned language model combined
with the state abstraction function LLMabstrct can effec-
tively act as a proxy for the general, goal-conditioned policy
π∗, generalizing to any new goal g /∈ Gtr and previously
unobserved low-level state x ∈ X .
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4. Related Work
LLMs for decision making. There is growing interest in
using general-purpose LLMs directly as decision-making
agents (Yao et al., 2023b). Various prompting techniques,
such as chain-of-thought (CoT) (Wei et al., 2023) and self-
reflection (Ji et al., 2023), have been developed to enhance
LLMs’ abilities in long-term planning tasks. Yet, prompting
alone is insufficient for solving complex tasks in dynamic
environments (Szot et al., 2024; Finn, 2024). To effectively
utilize the prior knowledge of LLMs, they must be grounded
in the environment dynamics. This can be achieved either
through in-context learning (Wang et al., 2023; Wu et al.,
2023) or fine-tuning (Carta et al., 2023; Tan et al., 2024;
Brohan et al., 2023a). A key limitation of in-context learning
is its restricted window size. In this work, we focus on
fine-tuning; however, unlike prior studies, we significantly
reduce the requirements on the input data.

LLMs as data enhancers. In conventional goal-
conditioned RL, datasets of state-action transitions require
augmentation with goal-dependent rewards, often through
human annotation or learning from demonstrations (Ziebart
et al., 2008; Fu et al., 2018; Bahdanau et al., 2018). Recent
studies show pre-trained LLMs can generate task-specific
rewards (Yu et al., 2023b; Ma et al., 2023; Xie et al., 2023),
though most rely on costly iterative prompting. We reduce
these costs by approximating LLM-induced reward func-
tions with proxy neural networks and assigning rewards in
abstracted state spaces, lowering labeling needs. Similar to
Peng et al. (2023), our approach uses natural language to
guide the elimination of irrelevant state features.

Language-conditioned RL. Prior work on language-
conditioned policies often assumes access to ground-truth
rewards (Jiang et al., 2019; Co-Reyes et al., 2018), real-time
experimentation (Fu et al., 2018; Bahdanau et al., 2018; Mir-
chandani et al., 2021), or expert demonstrations paired with
language annotations (Stepputtis et al., 2020; Xiao et al.,
2023; Brohan et al., 2023b;a). Our approach learns from
offline, unlabeled datasets that are potentially suboptimal
and lack reward signals. While most language-conditioned
RL studies evaluate on synonymous commands seen during
training (Lynch & Sermanet, 2021; Nair et al., 2022), we
focus on novel instructions corresponding to previously un-
solved goals which is a significantly more challenging setup
that only a few related works attempt to address (Xiao et al.,
2023; Brohan et al., 2023a; Jang et al., 2022).

See Appendix A for an extended discussion of related works.

5. Experiments
Questions. In our experiments we aim to answer the follow-
ing questions: (Q1) Does the use of a pre-trained language
model enable generalization to new language commands
and new states? (Q2) How does our method compare to sim-

pler prompting-based methods and alternative approaches
to language-conditioned RL? (Q3) As a result of SFT, does
the language model memorize the optimal actions or does
it learn generalizable and compositional skills? (Q4) How
does our method scale with computer power and what is the
effect of language abstractions on data efficiency?

Experimental Setup. We require a controlled with environ-
ment where a wide variety of distinct goals can be specified,
whose state-spaces can be represented in natural language.
We choose the BabyAI (Chevalier-Boisvert et al., 2018)
environment as our main benchmark and the Webshop en-
vironment (Yao et al., 2023a) as an additional environment
with an increased complexity of goals and actions, demon-
strating the adaptability of TEDUO beyond grid-world en-
vironments. A detailed discussion on these choices can be
found in Appendix A. BabyAI is a grid world platform for
instruction following where an agent receives natural lan-
guage goal instructions such as: “Go to the tile (3,2)” or

“Look behind the green locked door”. The grids can con-
sist of multiple rooms connected by open or locked doors
and different distractor objects that the agent can interact
with (boxes, keys, balls, etc.). The action space A consists
of several navigation primitives (forward, pickup, etc).
Webshop is a simulated e-commerce environment where an
agent given product requirements must locate correspond-
ing items by navigating a website. This environment is
particularly relevant due to its dynamically evolving action
space. The available actions vary by state due to changes
in the website’s UI elements. Furthermore, the agent must
generate linguistic inputs (e.g., search queries) to use the
search bar. This highlights the necessity for the fine-tuned
LLM to avoid catastrophic forgetting (Luo et al., 2025) and
produce coherent keywords for narrowing searches. We
work with the simplified HTML representation provided
in the environment as our abstracted state space. Due to
space constraints, results for the Webshop environment are
presented in the Appendix B.1.

Metrics. We rely on the following metrics to evaluate our
learned policies: success rate: proportion of attempts in
which the agent achieves the goal within the time limit (500
steps); episode length: the average number of steps taken
to reach the goal or the time limit; invalid actions: ratio of
invalid actions (e.g., moving into a wall) to total actions.

5.1. Q1: Online Evaluation: Generalization Benchmark

Setup. We choose the collection of Synth environments–
the most complex environments not requiring state memory
from BabyAI–as the main test bed for TEDUO. All envi-
ronments are constructed as a 22x22 grid and containing
9 rooms. They differ in the type, position, and color of
the distractors. The tasks include goals such as “go to the
{color} {object}”, “pick up the {color} {object}”, or “put
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Table 1. Online evaluation of generalization performance. Results averaged over 400 (g, sg0) pairs

Method Environ-
ment

Goals Success Rate
[%]

Episode
Length

Invalid Actions
[%]

Llama-3-8B (vanilla) train/test train/test 17 (±0.9) 444 (±3.2) 42 (±0.1)
Llama-3-70B (vanilla) train/test train/test 14 (±0.7) 452 (±3.0) 55 (±0.2)
Llama-3-8B (in-context+CoT) train/test train/test 16 (±0.7) 443 (±3.3) 42 (±0.1)
Llama-3-70B (in-context+CoT) train/test train/test 21 (±0.9) 432 (±3.8) 47 (±0.3)
DeepSeek-R1 (distilled to Llama-8B)a train/test train/test 32 (±3.6) 379 (±14.4) 40 (±0.5)

TEDUO: steps 1 & 2 + BabyAI-IL-bot

train train 69 (±1.2) 248 (±4.9) 17 (±0.6)
test train 45 (±1.2) 344 (±4.8) 19 (±0.6)
train test 15 (±0.8) 453 (±2.9) 44 (±0.7)
test test 16 (±0.8) 447 (±3.1) 36 (±0.6)

TEDUO-Llama-3-8B

train train 65 (±1.4) 203 (±6.7) 21 (±0.7)
test train 53 (±1.1) 257 (±5.4) 27 (±0.7)
train test 55 (±1.6) 241 (±7.5) 22 (±1.1)
test test 45 (±1.3) 286 (±6.1) 31 (±1.2)

a DeepSeek-R1 generates a reasoning trace per action, resulting in 100× longer responses by token count and inference time.
Consequently, results are averaged over 50 (g, sg0) pairs.

the {color} {object} next to the {color} {object}”. A list of
500 goals is used as Gtr. The set of testing goals contains
100 goals that are semantically distinct from those in Gtr.
The set of testing goals is augmented by asking GPT-4 to
paraphrase the original commands provided by BabyAI. We
train a Llama-3-8B model with TEDUO based on a dataset
D containing 800k non-unique state-action-state triplets
generated according to a policy that is a random mixture
of default policies from BabyAI3 (see Appendix C.3 for
details) .

Baselines. We compare our fine-tuned Llama-3-8B agent
with non-fine-tuned LLMs: DeepSeek-R1 (DeepSeek-
AI, 2025), Llama-3-8B and Llama-3-70B (Llama Team,
2024) using a) vanilla and b) CoT prompting (Wei et al.,
2023) with additional demonstrations provided in-context
(in-context+CoT). The latter integrates expert demonstra-
tions generated during step 2 of TEDUO to test the in-
context learning ability of the LLM. Following recent works
(Mezghani et al., 2023; Li et al., 2022; Cao et al., 2023), we
also compare against BabyAI-IL-bot, the baseline proposed
by the authors of BabyAI (Chevalier-Boisvert et al., 2018),
which is the combination of a GRU to encode the instruc-
tion, CNN+FILM layers to encode the grid and an LSTM
memory. We train this method via imitation learning on the
policy generated by TEDUO, steps 1&2. Implementation
details of can be found in Appendix C.8.1.

Results. Based on the results presented in Table 1 we make
the following observations:
Prior knowledge of LLMs is insufficient. We find that
non-fine-tuned LLMs, irrespective of their parameter count
or prompting method struggle in solving the seemingly sim-
ple tasks from the BabyAI environments. Low success rate

3Codebase to reproduce the main results of this paper can be
found at this link.

and high invalid action ratios indicate the inability of LLMs
to understand the dynamics of the environment. Common
failures include only using the action “move forward” with-
out considering the agent’s direction or attempting final
actions (e.g. door opening) without first navigating to the
correct location. This underscores the need for develop-
ing data-efficient methods for distilling knowledge of the
environment-dynamics into LLMs. Our fine-tunning strat-
egy brings the success rate from 17% to 65% in its training
setting and 45% for testing on novel goals.
Unlocking generalization. We evaluate the generalization
abilities of the fine-tuned TEDUO-Llama-3-8B model to
new environments and goals. When tested on new envi-
ronments unseen during training, a performance drop of
12% is observed, significantly smaller than BabyAI-IL-bot
with a drop of 24%. This can be explained by the over-
fitting of the baseline due to the limited offline training
data. TEDUO-Llama-3-8B benefits from the zero-shot ca-
pabilities of the pre-trained LLM. This effect is even more
pronounced with new goals–TEDUO experiences only an
8% decrease in success rate, compared to the 40% drop
for the BabyAI-IL-bot. Overall, TEDUO achieves nearly
three times better performance than the RL baseline when
generalizing to both new natural language commands and
environments. Appendix B.6 shows success rates by goal
type. Additional experiments demonstrating TEDUO’s gen-
eralization to larger, unseen BabyAI grids after training on
smaller grids are presented in Appendix B.7. Performance
remains robust for grids three times larger than those seen
during training, confirming TEDUO’s generalization ability.

5.2. Q2: Online Evaluation: Ablation Study

Setup. With the same experimental setup, we compare our
full fine-tuning pipeline with its ablations. After obtaining
the abstract datasets Dg with the first step of TEDUO, we
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Table 2. Ablation study. Results averaged over 400 (g, sg0) pairs.

Method Success
Rate [%]

Episode
Length

Invalid
Actions [%]

Step 1 + GCBC 7 (±0.6) 474 (±2.3) 11 (±0.1)

Steps 1+2 (GCRL) 16 (±0.8) 430 (±3.9) 10 (±0.1)

All steps
Llama-3-8B

65 (±1.4) 203 (±6.7) 21 (±0.7)

generate goal-conditioned policies with naive behavioral
cloning (step 1 + GCBC). We also compare our fine-tuned
Llama-3-8B against the performance of the GCRL policies
obtained with offline Q-learning in step 2. Note, neither of
GCBC nor GCRL can generalize to new, previously unseen
language commands. Therefore, in this study, we are only
looking at performance on goals from Gtr. Ablation of the
abstraction function is delayed to the next section.

Results. The results of GCBC and GCRL can be seen as
ablations of our pipeline. We first note that the success rate
of naive behavioral cloning is low, indicating low fidelity of
the data collection policy and highlighting the need for in-
corporating offline policy-learning methods. Moreover, the
significantly improved performance of the Q-learning poli-
cies (GCRL) validates the effectiveness of the first two steps
within our pipeline. The synthetically constructed MDPs
are meaningful offline constructs that yield policies effective
during online testing. Finally, the improved performance
of our fine-tuned Llama-3-8B over the Q-learning/GCRL
policies on training goals and environments confirms the
importance of the third step of our method and suggests that
the ungrounded, prior knowledge of large language models
improves generalization to new previously unseen states.

5.3. Q3: Learning and exploiting core skills

We wish to investigate if by learning the optimal policies
for diverse goals and environments, the LLM can integrate
core skills required to achieve these goals and whether such
skills can be transferred across tasks. We also investigate the
aspect of skill compositionality. Does the prior knowledge
of the LLM, now grounded in the environment dynamics,
suffice to compose together learned skills?

(a) Type A (b) Type B (c) Type C

Figure 3. Three simple environment types.

5.3.1. SKILL TRANSFER AND COMPOSITIONALITY.

Setup. We are working with three types of simple envi-
ronments illustrated in Figure 3. The position and color
of the door and box vary across different instantiations of
the environments. We use type A and B environments for

Table 3. Performance on type C test tasks. TEDUO A and TEDUO
B have been trained in only one environment whereas TEDUO
A&B has been trained in both.

Method Success
Rate [%]

Episode
Length

Invalid
Actions [%]

LLM (vanilla) 0 (±0.0) 20 (±0.0) 75 (±0.5)
TEDUO A 0 (±0.0) 20 (±0.0) 51 (±0.7)
TEDUO B 0 (±0.0) 20 (±0.0) 28 (±0.4)
TEDUO A&B 60 (±2.1) 16 (±0.2) 37 (±1.0)

training and type C environments for testing. We note that
tasks from type C environments require the internalization
of three core skills: moving to a given location, opening a
door, picking up a box. The skill of moving to a location can
be obtained from both environments A and B, but the skill of
picking up a box or opening the door can only be obtained
from one of the environments, A or B, respectively. This
setup allows us to investigate the transferability of learned
skills across environments and their compositionality.

Results. Table 3 shows that agents trained on one type of en-
vironments only fail to generalize. TEDUO A reaches a 99%
success rate in tasks without closed doors (type A grids), but
consistently fails when the goal is behind a door. TEDUO B
achieves an 81% success rate in new grids from Type B but
cannot generalize to Type C. The fact that TEDUO A&B
can generalize to the environment C that requires a combina-
tion of both skills independently seen during training with a
high success rate of 60% indicates that the fine-tuned LLM
does not merely memorize optimal trajectories for individ-
ual tasks. Instead, it learns core, generalizable abilities that
can be combined to solve novel tasks. This result empha-
sizes the significance of multi-skill learning for successful
generalization that TEDUO enables.

5.3.2. INTERNALIZATION OF CORE SKILLS.

One of the core skills required to successfully solve the tasks
is to identify whether the agent at its location is facing an
object or a wall, or it is free to move forwards. This section
provides additional insights into the behavior and internal
state representation of the LLM fine-tuned with TEDUO in
comparison to a base LLM.

Setup. As in the main evaluation benchmark, we operate
within the Synth environments and generate a dataset with
10 random goals and 512 states per each goal. We embed
each goal-state pair into the prompt template for eliciting
actions and LLM fine-tuning and pass them through both
the base and fine-tuned Llama-3-8B from experiments 5.1
and 5.2. We record the logprobabilities of the tokens [0, 1,
. . . , 6] as well as the hidden representation of states at each
layer. We label our dataset according to whether at the given
state the agent is facing a wall or an object. For each layer,
we fit two linear probes on top of the hidden representations:
one for wall and one for object detection.
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Figure 4. Interpretability results for detection of walls and objects.

Results. First, from Figure 4(a), we observe that a non-
fine-tuned Llama-3-8B puts a high probability on the action
’move forwards’ irrespective of whether the agent is facing
an obstacle or not; this results in a high ratio of invalid ac-
tions, as previously observed in the benchmark experiments.
After fine-tuning with TEDUO, the probability of moving
forwards when facing an obstacle is significantly reduced,
putting more weight on the actions of moving left or right
to avoid the obstacle. We also observe, that our TEDUO
method taught the LLM that objects can be picked-up (ac-
tion 3), only when the agent is directly facing it. From the
linear probe experiments (Figure 4(b)) we observe that after
fine-tunning, the internal representations of states directly
encode the information of whether the agent is facing an ob-
stacle. At the final layers, the ROC-AUC score of predicting
both types of labels is near 100%, in sharp contrast with the
score of around 80% for the non-fine-tuned model. Yet, the
score of 80% is still relatively, high, indicating that the orig-
inal state representations are sufficient to identify whether
the agents is facing an obstacle, but, since the non-fine-tuned
LLM lacks grounding of this knowledge with respect to the
environment dynamics, it struggles to translate it into an op-
timal action to be taken. This result underscores the claims
of previous works that out-of-the-box LLMs struggle to
translate their prior knowledge into low-level actions within
dynamic environments (Finn, 2024; Szot et al., 2024).

5.4. Q4: Data efficiency and Scaling of TEDUO
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Figure 5. Performance vs. offline dataset size. The abstraction
function enhances data efficiency.

Impact of state abstraction. Figure 5 shows the perfor-
mance of the Q-learning policies (i.e., policies πg obtained
at the end of TEDUO step 1+2) against the size of the ob-
servational dataset D. This experiment is realized with and

without the abstraction function during step 1. As antic-
ipated, the efficacy of the learned policies improves with
increasing size of the datasetD. On average, the LLM-based
state abstraction reduces the number of unique states by 10%
(see Fig. B.2). The reduction in state space size significantly
enhances data efficiency of our training method across all
three performance metrics. Furthermore, the size of the state
spaces Sgϕ, corresponding to the subset of features relevant
for identifying the completion of the goal is reduced to just
around 20% of the original state space size (Fig. B.2 in the
Appendix). This reduces the size of the datasets used for
training and the subsequent goal-identification 5-fold.

Compute power is the new bottleneck. Given a fixed
observational dataset D, we can expand at no extra cost
the fine-tuning dataset DSFT by introducing more training
goals in Gtr. Yet, larger DSFT necessitates more compute
power for training the LLM agent. Table 4 demonstrates the

Table 4. Performance vs. compute power.

TFlops |Gtr| Success
Rate [%]

Episode
Length

Invalid
Actions [%]

5.2e7 266 33 342 32
8.6e7 372 36 330 40
1.4e8 534 45 286 31

scaling of our method with compute power. As expected,
training on a wider range of goals results in an improved
performance on unseen test goals. We do not observe a
plateau in performance metrics, suggesting that with addi-
tional compute further gains may be possible. Consequently,
our approach shifts the bottleneck from the limited avail-
ability of real observational data to computational power.

6. Discussion
Limitations. Leveraging LLMs’ prior knowledge enables
efficient policy generation with minimal data. However,
some applications may benefit more than others. First, cer-
tain scenarios may be out of distribution even for LLMs
trained on extensive Internet data. Second, we assume that
the environment state can be represented textually, which,
although feasible for many applications due to language’s
expressiveness, may not be ideal in all cases (this can be
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owever mitigated by employing VLMs which we leave as
future work). Third, due to the discrete nature of LLM tok-
enization, using fine-tuned LLMs to directly output actions
requires discretization of the action space, which can hin-
der performance in continuous control tasks. Lastly, while
data requirements are minimal, they still assume some prac-
titioner knowledge of the environment and the data D to
propose the list of goals G (see Appendix B.2 for details).

Conclusions. We introduced a novel framework for training
natural language instruction-following agents capable of
generalizing to new states and instructions in a zero-shot
setting. This is the first method to learn natural language
goal-conditioned policies in an offline setting using obser-
vational data that is both unlabeled and non-expert. The
success of TEDUO relies on the synergy between the mu-
tual strengths of conventional RL and LLMs. Given the
demonstrated flexibility of this method in generalizing to
new goals and environments, future work could explore
its potential in learning across multiple environments with
distinct action and state spaces.
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A. Extended Related Work
A.1. Generalization in offline Reinforcement Learning

Following the work of Mediratta et al. (2024), we separate the generalization abilities of offline reinforcement learning
algorithms into two categories: new instruction following and adaptation to new states or environments.

Goal-conditioned RL. Goal-conditioned Reinforcement Learning (GCRL) is a subfield of RL dedicated to developing
policies capable of achieving multiple goals within the same environment dynamics. These policies are conditioned on an
additional input, g, indicating the goal that the next action should aim to achieve. While most recent research has focused on
online settings (Islam et al., 2022; Han et al., 2021; Hong et al., 2023; Yang et al., 2021), only a few methods have addressed
the offline GCRL problem (Yang et al., 2022; Ma et al., 2022; Chebotar et al., 2021). (Yang et al., 2023) offers a comparison
of these methods and highlights the key challenges in offline GCRL. Additionally, these approaches typically restrict goal
representations to those expressible as a single state in the state space (Chebotar et al., 2021), a scalar parameter (Ma et al.,
2022), or a fixed set of known goals (Yang et al., 2022).

Language-conditioned RL. Our work addresses the problem of goal-conditioned RL, where goals are expressed in natural
language. While using language to specify goals is natural and broadens the range of possible goals it comes with the
challenge of grounding the semantics of language in the environment state space and dynamics. Such language-instruction
following agents have been widely studied in both reinforcement learning and imitation learning contexts. However, most
existing methods either rely on access to an online environment for interaction (Fu et al., 2018; Bahdanau et al., 2018;
Jiang et al., 2019; Mirchandani et al., 2021) or require costly, goal-annotated expert datasets of offline demonstrations
(Stepputtis et al., 2020; Brohan et al., 2023b;a). In contrast, our approach does not assume any environment-provided reward
signal or access to real-time exploration. Furthermore, in terms of generalization to new natural language instructions,
we distinguish between evaluation on instructions that simply paraphrase the training goals (Nair et al., 2022; Lynch &
Sermanet, 2021) from those that represent semantically novel goals. Similar to the works of Xiao et al. (2023); Brohan
et al. (2023a); Stepputtis et al. (2020); Shridhar et al. (2021a); Jang et al. (2022), our focus is on the latter, more challenging
scenario.

Domain Generalization. While the previous section addressed generalization to new goals, this section focuses on
generalization to novel state-action transitions. This type of generalization extends beyond goal-conditioned RL, as it is
essential even for single-goal RL. It has been widely studied and observed that Offline RL methods often overfit to the
training distribution of state-action transitions, resulting in poor performance when the test distribution differs. Various
approaches have been proposed to address this distribution shift, including regularization techniques (Kostrikov et al., 2021;
Kumar et al., 2020), model-based RL (Yu et al., 2020; Kidambi et al., 2021), and enhanced representation learning (Mazoure
et al., 2021; Fan & Li, 2022). In TEDUO, we intentionally avoid domain generalization when solving the abstract MDPs in
step 2 to prevent providing incorrect examples to the LLM in step 3. However, our method achieves domain generalization
by leveraging the zero-shot capabilities of the fine-tuned LLM. Future work could enhance TEDUO by replacing tabular
Q-learning in step 2 with a method that generalizes to new state-action transitions.

A.2. Offline policy learning with minimal data requirements.

This paper focuses on realistic requirements regarding the training inputs. We work under offline setting, with a limited
number of unlabeled environment transitions (i.e., (xt, at, xt+1) triplets) and without any assumptions about the policy that
generated the actions. To address this scenario, we employ LLMs to label the data, enabling the use of RL methods, and as
an abstraction function to enhance sample efficiency. Below we discuss the related work regarding these two steps.

Hindsight labeling. Labeling data for goal-conditioned RL requires the design of reward functions for each goal. The
most common approach for designing the rewards relies on handcrafted methods that are often require multiple refinements
through trial and error (Knox et al., 2022). With a large number of goals, manual reward design becomes infeasible. Inverse
Reinforcement Learning (Ziebart et al., 2008; Fu et al., 2018) attempts to generate reward functions directly from data, but
it requires a large amount of expert demonstrations. Recent studies have explored the use of LLMs and VLMs as reward
functions. These methods typically involve creating a preference dataset (Klissarov et al., 2023), comparing the cosine
similarity between natural language goals and state representations, or leveraging the coding abilities of LLMs (Yu et al.,
2023a), especially in an online iterative fashion (Ma et al., 2023; Xie et al., 2024). These approaches are however aimed at
densifying the reward signal. In contrast, our method requires generating reward labels for a large number of goals (approx.
100-1000), making the scalability of the process crucial. Therefore, we focus on generating rewards with a limited number
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of LLM calls. Our approach relies on LLM-based detection of task completion, which has been proven effective by (Kwon
et al., 2023). We further reduce the number of LLM calls by approximating the LLM-generated rewards with lightweight
proxy neural networks.

State abstraction. State abstraction aims to reduce the complexity of the state space by eliminating irrelevant features,
thereby improving the efficiency of learning algorithms. Early work in this area focused on state aggregation, where similar
states are grouped together to form more compact representations, with state similarity defined through the transition
dynamics, value- or Q-functions (Andre & Russell, 2002; Li et al., 2006; Givan et al., 2003; Abel et al., 2018). Recent
advancements have explored more sophisticated methods, such as deep learning-based state abstractions, employing neural
networks to learn abstract representations of states (Allen et al., 2021). In this work, we explore the use of LLMs to
accomplish the task of state abstraction. Our approach relies on prompting a pre-trained LLM to remove the features of a
state that are irrelevant in solving the given goal. Such LLM-based state abstraction has been previously shown effective
in the context of robotics by Peng et al. (2023) who employ LLMs to translate the language command into a binary mask
highlighting the location of the goal-object.

A.3. Large Language Models for Decision Making

Decision Transformers. Pre-trained models based on the Transformer architecture have been widely used to address
decision-making problems. However, this paper does not focus on Decision Transformer (DT) models (Chen et al., 2021).
Although DTs have been applied in goal-conditioned RL and IL (Xu et al., 2022; Raparthy et al., 2023; Putterman et al.,
2022), the joint modelling of goal, state, and action representations remains challenging and requires large labeled datasets.
Instead of training a decision transformer, this papers leverages the prior knowledge accumulated in LLMs trained on
Internet data to a) enable effective use of the limited offline, unlabeled data, b) enable generalization to previously unseen
goals and states.

General-purpose LLMs for decision making. Utilizing off-the-shelf LLMs has gained significant attention due to its
simplicity. In decision-making, LLMs have been used to create assistance functions within training pipelines to enrich data
(Klissarov et al., 2023; Yu et al., 2023a; Ma et al., 2023; Xie et al., 2023; Laskin et al., 2022), and as high-level planners
during inference to guide traditional RL policies (Shah et al., 2023; Ahn et al., 2022). Additionally, there has been growing
interest in using general-purpose LLMs directly as decision-making agents (Yao et al., 2023b). Improving the reasoning
capabilities of LLM agents is now an active research area, focusing on methods that are independent of traditional RL.
These include iterative prompting techniques such as self-reflection (Ji et al., 2023), CoT reasoning (Wei et al., 2023), and
integration with planning algorithms like Monte Carlo Tree Search (Pouplin et al., 2024). Nevertheless, such methods have
been shown inefficient in completing complex, multi-step decision-making tasks in dynamic environments (Finn, 2024;
Szot et al., 2024). To effectively use the knowledge embedded in LLMs for solving RL problems, these models need to be
grounded in the dynamics of the environment.

Grounding LLMs with the environment dynamics. An LLM agent grounded in an environment can link the semantics of
both observations and possible actions to its internal representation system, enabling appropriate decision-making (Carta
et al., 2023; Harnad, 1990). One approach to achieve such grounding is through in-context learning. For instance, Voyager
(Wang et al., 2023) pushes the concept of an LLM agent to its limits by developing an automatic curriculum for GPT-4,
supported by a library of executable programs, to play Minecraft. Another method involves providing the LLM with a game
manual (Wu et al., 2023). However, these approaches either rely on extensive expert knowledge, such as carefully designed
prompts, or on game manuals, which may not always be available. Additionally, in-context learning has limitations in
data-driven scenarios, partly due to the restricted context window size, which is insufficient for incorporating entire datasets.
An alternative approach involves fine-tuning LLMs to achieve grounding. Studies such as (Tan et al., 2024) and (Carta
et al., 2023) use Proximal Policy Optimization (PPO) (Schulman et al., 2017) to propose online fine-tuning of LLMs. In
the robotics domain, RT2 (Brohan et al., 2023a) demonstrates that co-fine-tuning on both web-scale data and expert robot
demonstrations improves performance of VLMs for decision making in the context of robotics. Our method differs from
previous work by significantly lowering the requirements on input data, as we do not need online interaction or labeled
expert demonstrations. Furthermore, while RT2 implements co-fine-tuning, our method utilizes an off-the-shelf pre-trained
LLM, which is then fine-tuned.
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B. Additional Results
B.1. Webshop results

Main Results. The results averaged over 200 instructions are shown in Table B.1. Unlike Minigrid, Webshop does not
feature multiple environment types, prohibiting generalization evaluation across environments. The scores represent the true
environment reward (scaled to [0, 100]).

Table B.1. Online evaluation of generalization performance for the Webshop environment. Results averaged over 200 instructions.

Method Goals Score Episode Length

ReAct-Llama-3-8B Training/Testing 8.4 (±0.8) 14.1 (±0.1)

ReAct-Llama-3-70B Training/Testing 13.8 (±0.9) 14.2 (±0.1)

TEDUO-Llama-3-8B Training 52.1 (±0.6) 6.6 (±0.1)

TEDUO-Llama-3-8B Testing 44.4 (±0.6) 6.9 (±0.1)

This benchmark demonstrates that TEDUO successfully learns from unlabeled trajectories in the Webshop environment.
TEDUO significantly outperforms the ReAct prompting approach, particularly when applied to smaller models (compared
to GPT-3.5 in the original paper). While ReAct prompting provides some improvement over standard prompting, its
performance remains limited, whereas TEDUO achieves substantially better results.

Table B.2. Ablation study for the Webshop environment. Results averaged over 200 instructions.

Method Goals Score Episode Length

Data collection policy (LLM-random) Training/Testing 5.6 (±0.5) 12.3 (±0.2)

Step 1 2 (GCRL) Training 56.2 (±0.6) 6.9 (±0.1)

TEDUO-Llama-3-8B Training 52.1 (±0.6) 6.6 (±0.1)

TEDUO-Llama-3-8B Testing 44.4 (±0.6) 6.9 (±0.1)

Ablation study: Similar to the approach in the paper, table B.2 provides an ablation study below that summarizes the
performance improvements achieved after each TEDUO step. The results demonstrate that TEDUO Steps 1 & 2 effectively
produce improved policies over the data collection policy for the training goals. Furthermore, TEDUO Step 3 successfully
achieves its generalization objective, extending the learned policy’s performance to new instructions. Compared to the
BabyAI environment, the fine-tuned LLM does not outperform the Q-learning policies trained on the training instructions.
This limitation can be attributed to the lack of diversity in the initial states. In the BabyAI environment, agents can start from
any grid position, including configurations unknown to the tabular Q-learning policies, often resulting in failure trajectories.
In contrast, the fine-tuned LLM demonstrates successful generalization in such cases. However, the webshop environment
presents a single initial state—the search bar webpage. To surpass the Q-learning policies in this setting, the LLM would
need to contradict its learned behaviors, making superior performance unattainable.
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B.2. The impact of the data collection policy

We examine the effect of the data collection policy on our pipeline’s performance. Specifically, we demonstrate that our
pipeline remains effective irrespective of the optimality of the data collection policy with respect to the set Gtr.

Given the observational dataset D collected under a policy πβ , let GD represent the set of goals corresponding to goal states
that have been visited in D. This set is defined as:

GD = {g ∈ G : ∃(x, a, x′) ∈ D s.t. Rϕ(x, a, x
′; g) = 1}. (1)

We can measure the alignment between the dataset D and the training goals Gtr by the size of GD ∩ Gtr, i.e. the set of goals
from Gtr that have been visited in D. A key point is that, in step 2 of TEDUO, we cannot generate a policy πg for any
goal g not present in GD. As discussed in section 5.4, the performance of the fine-tuned LLM depends on the size of the
synthetically generated dataset DSFT , making |GD ∩ Gtr| an import ant metric for evaluating the fidelity of our training
inputs: D and Gtr.

To empirically analyze this, we consider two randomized policies:

• A) Goal-oriented policy: This is the policy used for data collection in the main experimental section. For each trajectory,
a random goal from a set of goals Gπ is drawn and the agents acts according to the goal-oriented policy provided in the
BabyAI environment in order to achieve it. This policy simulates agents attempting to accomplish multiple task within the
environment. Examples of real-world unlabeled data that could be generated from such policy include CCTV footage of
employees at work, logs of medical procedures performed on a patient, or YouTube videos.

• B) Random policy: Actions are drawn uniformly at random from the action space. This policy represents an agent that
explores the environment without a specific goal. Although this scenario is less common in real-world settings—where
agents typically pursue objectives—it remains applicable to batch RL, particularly when learning from untrained agents
with no prior knowledge.
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Figure B.1. Impact of data collection policy. The x-axis shows the proportion of data D collected with policy A vs. policy B for a fixed
size of D. a) The y-axis shows |Sg

0 |, i.e. the number of unique initial abstract states sg0 for which g is reachable with the learned policy πg .
Values are min-max normalized across all 5 mixture policies. b) The y-axis shows the same values as plot a), averaged across 14 goals,
bars represent the standard error.

The metric of fidelity. The likelihood of the final fine-tuned LLM in solving a given goal g from any starting position is
directly linked to the fidelity of the corresponding Q-learning policy, πg. Thus, we chose to measure the fidelity of our
starting point inputs by computing the number of initial abstract states sg0, from which g can be solved using πg . We define a
goal g as reachable from sg0 if by iteratively selecting the actions a∗t = argmaxπg(·|sgt ), the agent can eventually reach g.
We denote this number of states with |Sg0 |. The set of candidate initial states to compute |Sg0 | is the entire abstract state
space.

Figure B.1 illustrates that the optimal data collection policy varies by goal. For some goals policy A works better, while for
others it is the fully random policy. Importantly, a comparable amount of synthetic action sequences for fine-tunning the
LLM can be extracted using either policy A or B. Averaging across all goals, we find that policy A tends to perform better
for goals in Gπ than those not in Gπ .
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Explanation: We note that only a subset of initial states sg0 has been used during data collection. Using a goal-oriented
policy to collect trajectories results in limited exploration of the state space. Consequently, the learned policies πg are
expected to excel at solving g when started from a state that has been visited in D, but are not guaranteed to succeed when
started from sg0 not visited in D. This is why, including more exploration during data collection can help in ensuring that
the learned policies can reach their respective goals from anywhere in the state space. However, relying solely on random
exploration is only effective for simple goals that are likely to be reached by chance. Instead, in our main experiments, we
use a goal-oriented collection policy that uniformly samples across goals of varying difficulty. This results in a more diverse
dataset that includes complex behaviors and better reflects realistic settings, where completely random agents don’t exist.

Future work could explore optimizing the set of training goals Gtr to maximize the alignment of Gtr with a given dataset
D. Yet, the necessity of aligning D and Gtr is moderated by two factors. First, as shown in subsection 5.4, the abstraction
function reduces the complexity of the abstract MDPs, requiring fewer data samples. Second, since extending the list of
goals in Gtr is computationally inexpensive, we can continually seek better alignment.
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B.3. Abstraction function

Figure B.2 presents the performance of the abstraction function used in the BabyAI environment.
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Figure B.2. Reduction in count of unique states due to applying the LLM(g) abstraction functions and the relative size of the reduced
abstract feature space Sg

ϕ, containing only features necessary to identify the completion of a goal g.

B.4. TEDUO step 2: Deep Q-Learning.

The step 2 of the TEDUO framework is independent of the specific offline reinforcement learning algorithm used to solve
the abstract MDPs generated in step 1. Each abstract MDP is represented by a labeled transition dataset Dg, consisting
of tuples (sg, a, s′g, rg), making it compatible with any standard offline RL algorithm. In the implementation presented
in Section 3, we used tabular Q-learning as it was most suitable for the environment under consideration. However, to
illustrate the scalability of the approach, we show in table B.3 the performance of Deep Q-learning (DQN) (Mnih et al.,
2013), demonstrating that it can effectively replace tabular Q-learning in our framework. The deep learning models for
Q-value estimation combine CNN and dense layers, consistent with the lightweight models used for reward shaping (see
Appendix C.5).While tabular Q-learning is limited to discrete state and action spaces and becomes impractical as their
dimensions grow, DQN handles continuous spaces and scales effectively without such constraints.

Table B.3. Ablation study with DQN. Results averaged over 400 (g, sg0) pairs.

Method Success Rate [%] Episode Length Invalid Actions [%]

Step 1 + GCBC 7 (±0.6) 474 (±2.3) 11 (±0.1)
Steps 1 & 2 (GCRL- Tabular) 16 (±0.8) 430 (±3.9) 10 (±0.1)
Steps 1 & 2 (GCRL- DQN) 15 (±1.2) 446 (±5.9) 15 (±0.1)
All steps Llama-3-8B 65 (±1.4) 203 (±6.7) 21 (±0.7)
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B.5. Reward shaping evaluation

This section evaluates the performance of the reward-shaping step. We utilize pre-trained LLMs to identify states where a
specific goal g is achieved. As discussed in Section 3.1.2, the large number of states (around 200k) for each goal makes direct
LLM usage impractical due to computational constraints. Therefore, the process is divided into two steps: (a) constructing a
supervised dataset by labelling a subset of states (5k) using an LLM, and (b) training a lightweight neural network Rθ(·; g)
on this dataset.

Table B.4. Reward Shaping Benchmark. The accuracy, precision, and recall metrics are computed with a classification threshold ensuring
at least 95% precision.

Goals ROC-AUG Accuracy (%) Precision (%) Recall (%)
Go to a box 0.90 89 96 38

Pick up a ball 0.75 98 95 83

Open a door 0.92 85 95 85

Go to red door 0.98 94 100 0.2

Go to the tile (5,6) 1.0 100 100 100

Put a box next to a blue ball 0.64 100 100 25

Table B.4 shows the performance of Rθ(·; g) for various types of goals compared to ground truth rewards. The benchmark
setup is consistent with the main experiments; details are provided in the Appendix C.5. All goals achieve 95% precision,
a crucial metric since false positives lead to generating incorrect data points for DSFT in TEDUO’s step 2. Conversely,
false negatives only reduce data points in DSFT , which is less critical given our synthetic data abundance (see Section 5.4).
Performance varies across goals; for instance, ”go to the red door” has low recall (0.2%), likely due to limited positive
examples in the dataset. Expanding the dataset could improve such outcomes.

Table B.5. LLM-only Reward Shaping Benchmark. Accuracy, precision, and recall are computed with respect to LLM-generated labels.

Goals Accuracy (%) Precision (%) Recall (%)

Go to a box 100 100 100

Pick up a ball 100 100 100

Open a door 100 100 100

Go to a green door 99 88 100

Go to the tile (5,6) 100 100 100

Put a box next to a blue ball 100 100 100

Table B.5 reports the performance of LLM-only reward shaping across a variety of goal types. The model achieves
near-perfect accuracy, precision, and recall, indicating a strong ability to generate consistent goal labels from environment
states. The slight drop in precision for the Go to a green door task highlights occasional LLM hallucinations, though such
cases are rare. Consequently, most residual inaccuracies in the overall reward shaping pipeline come from lightweight
downstream models used to reduce computational overhead, rather than from the LLM-generated annotations themselves.
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B.6. Benchmark results per goal category

Table B.6. Online evaluation of generalization performance split per goal category. This is the success rate [%] presented in Table 1
with the 400 (g, sg0) grouped by goal category.

Method Environ-
ment

Goals Pick up a X Go to
the X

Open a
X

Put an X next
to a Y

Llama-3-8B (vanilla) train/test train/test 11 (± 1.6) 35 (± 2.3) 8 (± 1.1) 0 (± 0.0)

Llama-3-70B (vanilla) train/test train/test 13 (± 1.7) 33 (± 2.2) 2 (± 0.5) 0 (± 0.0)

Llama-3-8B (in-context+CoT) train/test train/test 6 (± 1.3) 36 (± 2.1) 10 (± 1.4) 0 (± 0.0)

Llama-3-70B (in-context+CoT) train/test train/test 9 (± 1.4) 45 (± 1.7) 14 (± 1.2) 0 (± 0.0)

TEDUO: steps 1 & 2 + BabyAI-
IL-bot

train train 46 (± 2.0) 92 (± 1.2) 100 (± 0.0) 7 (± 2.9)

test train 30 (± 1.6) 58 (± 1.7) 100 (± 0.0) 6 (± 2.1)

train test 5 (± 1.2) 44 (± 2.5) 4 (± 0.9) 0 (± 0.0)

test test 7 (± 1.2) 40 (± 2.2) 5 (± 0.9) 0 (± 0.0)

TEDUO (Llama-3-8B)

train train 46 (± 2.3) 85 (± 1.3) 100 (± 0.0) 0 (± 0.0)

test train 39 (± 2.4) 65 (± 2.0) 100 (± 0.0) 0 (± 0.0)

train test 20 (± 3.8) 87 (± 3.2) 83 (± 1.8) 0 (± 0.0)

test test 26 (± 3.0) 70 (± 2.8) 61 (± 2.6) 0 (± 0.0)
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B.7. Generalization to Grids of Varying Sizes

In this experiment, we fine-tune Llama-3-8B-Instruct using the TEDUO pipeline, leveraging training data collected
from environments with grid sizes 1, 4, 6, and 9. Here, the grid size refers to the number of rooms it contains. Figure B.3
illustrates an example of a 5×5 grid (size 25). We evaluate the resulting model on larger environments with grid sizes 16
(4×4), 25 (5×5), and 49 (7×7), as reported in Table B.7.

Classical CNN-based RL agents such as BabyAI-IL-bot fail to generalize to larger grids due to the fixed size of their
convolutional layers, which constrains them to a fixed grid size. In contrast, the vanilla LLM exhibits consistent performance
across grid sizes, albeit at a lower level. The model fine-tuned with TEDUO achieves substantially improved success rates
on grid sizes close to those seen during training. This demonstrates TEDUO’s ability to facilitate generalization to more
complex environments. However, as the grid size increases beyond the training distribution, the performance gradually
declines, ultimately approaching that of the vanilla LLM on 7×7 grids.

Table B.7. Online evaluation of generalization to larger grid sizes. Results are averaged over 200 (g, sg0) pairs.

Method Environ-
ment

Goals Success Rate Episode Length Invalid Ac-
tions

Llama-3-8B (vanilla)

4x4 train/test 13 (±0.8) 905 (±6.2) 33 (±0.2)

5x5 train/test 16 (±0.8) 901 (±6.3) 35 (±0.2)

7x7 train/test 19 (±0.8) 874 (±6.8) 39 (±0.1)

TEDUO: steps 1 2 + BabyAI-IL-bot 4x4 / 5x5 / 7x7 train/test 0 (±0) 500 (±0) NA

TEDUO-Llama-3-8B

4x4 train 53 (±1.8) 597 (±16.1) 33 (±0.6)

4x4 test 36 (±1.6) 726 (±14.3) 38 (±0.4)

5x5 train 35 (±1.8) 739 (±16.3) 36 (±0.6)

5x5 test 31 (±1.6) 757 (±13.3) 36 (±0.4)

7x7 train 19 (±1.3) 867 (±10.2) 31 (±0.4)

7x7 test 25 (±1.3) 852 (±10.1) 35 (±0.4)

Figure B.3. Example of a BabyAI grid of size 25 (5x5).
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C. Experimental details
C.1. Choice of Environments

BabyAI. This paper primarily uses the Minigrid-BabyAI environment to benchmark its method. This choice was motivated
by several factors. Most importantly, we require a sandbox environment in which a wide range of goal reaching tasks can
be expressed in natural language. Robotic environments ((Todorov et al., 2012; James et al., 2019)) were excluded due to
precise control of robotic components being beyond LLM’s prior knowledge and the need to discretize continuous actions to
match LLM’s tokenized output. Additionally, 3D environments ((Fan et al., 2022; Puig et al., 2018)) were not considered
due to computational constraints. Text-based games ((Côté et al., 2018; Shridhar et al., 2021b)) were also excluded as they
involve high-level text interactions, contrary to this paper’s focus on low-level control task for language models.

Given the significant computational resources and time required to perform all three steps of our pipeline, in particular
fine-tuning an LLM agent, our current scope is necessarily limited to BabyAI. Nonetheless, the insights derived from this
controlled setting are broadly applicable and provide a foundation for future work in environments with similar tabular
structures, such as NetHack ((Küttler et al., 2020)) and Overcooked ((Carroll et al., 2020)), which differ mainly in thematic
focus (video game dungeon crawling and collaborative cooking, respectively).

Webshop. To demonstrate the ability of TEDUO to scale beyond grid-world environments, this section proposes an
additional benchmark of TEDUO in the Webshop environment (Yao et al., 2023a). The development of digital agents which
are can excel at tasks performed on computers, such as web navigation, coding, and operating office software is one of the
most promising applications emerging from the LLM-Reinforcement Learning synergy. Webshop is a simulated e-commerce
environment where an agent given product requirements must locate corresponding items by navigating a website. This
environment is particularly relevant due to its dynamically evolving action space, presenting two key challenges:

Dynamic UI Actions: The available actions vary by state due to changes in the website’s UI elements. We address this
challenge by concatenating the available actions with the state description. Linguistic Action Requirements: The agent
must generate linguistic inputs (e.g., search queries) to use the search bar. This highlights the necessity for the fine-tuned
LLM to avoid catastrophic forgetting (Luo et al., 2025) and produce coherent keywords for narrowing searches.

C.2. Guide for Practitioners

This section provides a high-level summary of the adaptations required to deploy TEDUO in a new environment. The key
modifications involve adjusting the stages where domain knowledge is incorporated. Specifically, the following prompts
must be adapted:

1. The prompt for generating the abstraction function (Appendix C.4).

2. The prompt for reward labeling (Appendix C.5).

3. The prompt used at inference time (Appendix C.7).

At these stages, prior knowledge about the environment’s dynamics, the semantics of instructions, or any contextual
information that can facilitate goal-conditioned policy learning in Step 3 can be integrated via natural language. The
provided prompt examples illustrate how such adaptations can be implemented for two different environments.

Additionally, the offline Reinforcement Learning method used to solve the abstract Markov Decision Processes in Step 2
should be tailored to the characteristics of the environment. This includes considering factors such as modality, the scale of
the state and action spaces, and the number of initial states.

C.3. Data Collection

As mentioned in the main body of this paper, our pipeline makes no assumption on the data collection policy used.

C.3.1. BABYAI ADAPTATION

In the experiments with the BabyAI environment, we rely on the default goal-oriented policies from the BabyAI environment.
We denote these policies by πβ(·; g). Our data collection policy is then a random mixture of the policies πβ(·; g). Given a
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randomly sampled initial state x0 ∈ X and an unknown goal g randomly sampled from the set of original BabyAI language
commands, we let the agent interact with the environment according to πβ(·; g) until either g is reached or the limit of 500
steps is reached. This policy simulates agents attempting to accomplish multiple task within the environment. Examples of
real-world unlabeled data that could be generated from such policy include CCTV footage of employees at work, logs of
medical procedures performed on a patient, or YouTube videos.

Refer to Appendix B.2 for an analysis of how the data collection policy affects our pipeline, comparing goal-oriented data
collection with fully random data collection.

C.3.2. WEBSHOP ADAPTATION

In the experiment with the Webshop environment, to demonstrate that our pipeline can learn from non-expert demonstrations,
we design a goal-conditioned data collection policy, πβ(·; g), which relies on a pre-trained LLM and random actions. When
encountering a ”search” webpage that allows keyword input for locating the target object, πβ(·; g) prompts a pre-trained
LLM with instruction g to generate relevant keywords. In all other states, πβ(·; g) selects a random action from the set of
available options provided by the environment. The pre-trained LLM is Llama-3-8B-Instruct with the following parameters:
temperature: 1, top k: 40, maximum number of tokens: 200.

Each episode terminates either upon purchasing an object or reaching the step limit of 200. Using πβ(·; g), we collect 5,000
unlabeled trajectories spanning 1,500 unique instructions.

C.4. Step 1: Abstraction Function

The abstraction function utilizes contextual understanding of LLMs to identify goal-relevant features. The state abstraction
operator is implemented as a collection of Python functions built on top of the feature selection made by a prompted
language model, F ( · ; g) = LLMabstrct(g)(·). Using LLM powered Python functions instead of directly applying the
LLM to create an abstraction of each state reduces the number of LLM calls from |X ||Gtr| to |Gtr| and ensures that the
abstraction is consistent across all states. The prompt for generating the code includes contextual information about the
environment, a list of features, and a description of the goal, instructing the LLM to create a function that removes features
of a state that are irrelevant to achieving the specified goal. Additionally, our state abstraction functions separate the set
of relevant features into two subsets: sgϕ and sg

ϕ̄
, so that sgϕ ∪ sg

ϕ̄
. The features in sgϕ are the ones which are necessary for

identifying if the underlying low-level state achieves g, i.e. if x ∈ ϕ(g). The remaining features, which are relevant for
solving the task specified by g but not strictly necessary for identifying if this goal is achieved are found in sg

ϕ̄
. We introduce

this separation of abstracted features to even further reduce the dimensionality of the state space for hindsight labeling (see
next section).

C.4.1. BABYAI ADAPTATION

To adopt the state abstraction function in for the BabyAI environment, we prompt an LLM with the given goal, a randomly
sampled state representation as an example, and two in-context examples of the expected output. Figure C.4 shows the
prompt template used. The LLM returns the goal relevant features which are then passed to a python function that processes
states according to the following rules:

• Distractors identified in the selected features are labeled as either ”goal object” or ”goal location.”

• Distractors not included in the selected features are labeled as obstacles.

• Doors not referenced in the selected features are assigned uniform colors.

• If all relevant objects are within the agent’s current room, the environment outside the room is disregarded.

In our experiments, we use the Llama-3-70B-Instruct language model with the following parameters: {temperature: 0, top k:
1, maximum number of tokens: 8000}.

C.4.2. WEBSHOP ADAPTATION

The WebShop environment includes predefined state abstractions that simplify the original HTML representation of the
website. In our experiments, we utilize these abstractions, which are shared across all goals rather than being goal-specific,
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as in BabyAI. Furthermore, given the demonstrated ability of LLMs to parse HTML (Gur et al., 2023), we are confident that
TEDUO Step 1 could replicate a similar abstraction. Since WebShop is non-Markovian, we ensure Markovian properties by
using historical states–concatenating all states from the initial to the current state. References to ”states” in the following
discussion refer to these history-augmented states.

<|b e g i n o f t e x t |><| s t a r t h e a d e r i d |>system<|e n d h e a d e r i d |>You a r e h e l p i n g a R e i n f o r c e m e n t l e a r n i n g a g e n t i n t h e m i n i g r i d
e n v i r o n m e n t . Always answer as h e l p f u l l y as p o s s i b l e , w h i l e b e i n g t r u t h f u l .<| e o t i d |><| s t a r t h e a d e r i d |>use r <|
e n d h e a d e r i d |>Given a g r i d , i t s f e a t u r e s and a goa l , can you s i m p l i f y t h e f e a t u r e s o f t h e g r i d by d e t e c t i n g a l l t h e
o b j e c t s r e l a t e d t o t h e g o a l and i f n e c e s s a r y g o a l l o c a t i o n . i f n e c e s s a r y , make s u r e t o f l a g a l l t h e r e l e v a n t o b j e c t and
n o t j u s t one .

I ’m g i v i n g you two examples on t h e same g r i d :

Gr id : ” I t i s a 22 by 22 t i l e s g r i d . The f e a t u r e s o f t h e e n v i r o n m e n t a r e :
0 . The f o l l o w i n g t i l e s a r e w a l l : ( 1 , 7 ) ( 1 , 1 4 ) ( 2 , 7 ) ( 2 , 1 4 ) ( 3 , 7 ) ( 3 , 1 4 ) ( 4 , 7 ) ( 5 , 7 ) ( 5 , 1 4 ) ( 6 , 1 4 ) ( 7 , 1 ) ( 7 , 2 ) ( 7 , 3 ) ( 7 , 4 ) ( 7 , 5 )

( 7 , 6 ) ( 7 , 7 ) ( 7 , 8 ) ( 7 , 9 ) ( 7 , 1 0 ) ( 7 , 1 1 ) ( 7 , 1 3 ) ( 7 , 1 4 ) ( 7 , 1 5 ) ( 7 , 1 6 ) ( 7 , 1 7 ) ( 7 , 1 8 ) ( 7 , 1 9 ) ( 7 , 2 0 ) ( 8 , 7 ) ( 8 , 1 4 ) ( 9 , 1 4 ) ( 1 0 , 7 )
( 1 0 , 1 4 ) ( 1 1 , 7 ) ( 1 1 , 1 4 ) ( 1 2 , 7 ) ( 1 3 , 7 ) ( 1 3 , 1 4 ) ( 1 4 , 1 ) ( 1 4 , 2 ) ( 1 4 , 3 ) ( 1 4 , 4 ) ( 1 4 , 5 ) ( 1 4 , 6 ) ( 1 4 , 7 ) ( 1 4 , 9 ) ( 1 4 , 1 0 ) ( 1 4 , 1 1 )

( 1 4 , 1 2 ) ( 1 4 , 1 3 ) ( 1 4 , 1 4 ) ( 1 4 , 1 6 ) ( 1 4 , 1 7 ) ( 1 4 , 1 8 ) ( 1 4 , 1 9 ) ( 1 4 , 2 0 ) ( 1 5 , 7 ) ( 1 5 , 1 4 ) ( 1 6 , 7 ) ( 1 6 , 1 4 ) ( 1 7 , 7 ) ( 1 7 , 1 4 ) ( 1 8 , 7 )
( 1 8 , 1 4 ) ( 1 9 , 1 4 ) ( 2 0 , 7 ) ( 2 0 , 1 4 )

1 . A open p u r p l e box i s on t i l e ( 1 , 2 0 )
2 . A open g r e e n box i s on t i l e ( 5 , 8 )
3 . A open ye l l o w box i s on t i l e ( 6 , 5 )
4 . A open b l u e box i s on t i l e ( 8 , 1 3 )
5 . A open p u r p l e box i s on t i l e ( 1 5 , 3 )
6 . A open grey box i s on t i l e ( 1 8 , 1 0 )
7 . A open r e d box i s on t i l e ( 2 0 , 1 9 )
8 . A c l o s e d ye l l o w door i s on t i l e ( 4 , 1 4 )
9 . A c l o s e d p u r p l e door i s on t i l e ( 6 , 7 )
1 0 . A l o c k e d g rey door i s on t i l e ( 7 , 1 2 )
1 1 . A c l o s e d r e d door i s on t i l e ( 9 , 7 )
1 2 . A c l o s e d ye l l ow door i s on t i l e ( 1 2 , 1 4 )
1 3 . A c l o s e d g rey door i s on t i l e ( 1 4 , 8 )
1 4 . A c l o s e d g rey door i s on t i l e ( 1 4 , 1 5 )
1 5 . A c l o s e d r e d door i s on t i l e ( 1 9 , 7 )
1 6 . A b l u e key i s on t i l e ( 3 , 5 )
1 7 . A grey key i s on t i l e ( 8 , 1 0 )
1 8 . A b l u e key i s on t i l e ( 1 1 , 4 )
1 9 . A p u r p l e b a l l i s on t i l e ( 1 , 1 6 )
2 0 . A g r e e n b a l l i s on t i l e ( 2 , 2 0 )
2 1 . A b l u e b a l l i s on t i l e ( 3 , 1 9 )
2 2 . A r e d b a l l i s on t i l e ( 9 , 1 2 )
2 3 . A grey b a l l i s on t i l e ( 9 , 1 3 )
2 4 . A ye l l ow b a l l i s on t i l e ( 1 3 , 1 )
2 5 . A grey b a l l i s on t i l e ( 1 3 , 6 )
2 6 . A ye l l ow b a l l i s on t i l e ( 1 7 , 6 )
2 7 . I n v e n t o r y : [ ]

Exemple 1 :
The g o a l i s ” P i ck up a b l u e key ” .

F o l l o w i n g t h e i n d i c a t i o n s , t h e c o r r e c t o u t p u t i s t h e s e s i m p l i f i e d f e a t u r e s :

{” g o a l o b j e c t ” : ( 3 , 5 ) ( 1 1 , 4 )}

Example 2 :
The g o a l i s ” Pu t a g r e e n box n e x t t o a g rey b a l l ” .

F o l l o w i n g t h e i n d i c a t i o n s , t h e c o r r e c t o u t p u t i s t h e s e s i m p l i f i e d f e a t u r e s :

{” g o a l o b j e c t ” : ( 1 8 , 1 0 ) ,
” g o a l l o c a t i o n ” : ( 9 , 1 3 ) ( 1 3 , 6 ) ,}

Now, my g o a l i s ”{goal}” and I am i n t h e f o l l o w i n g g r i d :
” I t i s a 22 by 22 t i l e s g r i d . The f e a t u r e s o f t h e e n v i r o n m e n t a r e :
{state}

Let ’ s t h i n k s t e p by s t e p . F i r s t , t e l l me a b o u t your knowledge o f t h e M i n i g r i d / BabyAI r e i n f o r c e m e n t l e a r n i n g e n v i r o n m e n t . Then ,
p r o v i d e an a n a l y s i s o f t h e e n v i r o n m e n t and t h e g o a l . F i n a l l y , w r i t e s i m p l i f i e d f e a t u r e s i n t h e same f o r m a t a s t h e example
.<| e o t i d |><| s t a r t h e a d e r i d |> a s s i s t a n t <|e n d h e a d e r i d |>

Figure C.4. Prompt template for selecting the relevant features to achieve the goal in the BabyAI environment.

C.5. Step 1: Reward Shaping

As detailed in Section 3.1.2, the reward shaping process involves two stages.

In the first stage, a large language model LLM, here Llama-3-70B-Instruct, is utilized to generate a supervised dataset of
labeled goals, {(sg, rg) : rg = LLMrwrd(sg; g), sg ∈ S̃g} for each g ∈ Gtr. We choose S̃g as a small (up to 5000 states),
diverse subset of the abstract space Sg and rg ∈ {0, 1}. The subset S̃g is chosen so that for any two abstract states, the
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0 . The f o l l o w i n g t i l e s a r e w a l l : ( 1 , 7 ) ( 1 , 1 4 ) ( 2 , 7 ) ( 2 , 1 4 ) ( 3 , 7 ) ( 3 , 1 4 ) ( 4 , 1 4 ) ( 5 , 7 ) ( 6 , 7 ) ( 6 , 1 4 ) ( 7 , 1 ) ( 7 , 2 ) ( 7 , 3 ) ( 7 , 4 ) ( 7 , 5 ) ( 7 , 6 )
( 7 , 7 ) ( 7 , 9 ) ( 7 , 1 0 ) ( 7 , 1 1 ) ( 7 , 1 2 ) ( 7 , 1 3 ) ( 7 , 1 4 ) ( 7 , 1 5 ) ( 7 , 1 6 ) ( 7 , 1 7 ) ( 7 , 1 8 ) ( 7 , 1 9 ) ( 7 , 2 0 ) ( 8 , 7 ) ( 8 , 1 4 ) ( 9 , 7 ) ( 1 0 , 7 ) ( 1 0 , 1 4 ) ( 1 1 , 7 )

( 1 1 , 1 4 ) ( 1 2 , 7 ) ( 1 2 , 1 4 ) ( 1 3 , 1 4 ) ( 1 4 , 1 ) ( 1 4 , 2 ) ( 1 4 , 3 ) ( 1 4 , 4 ) ( 1 4 , 6 ) ( 1 4 , 7 ) ( 1 4 , 8 ) ( 1 4 , 9 ) ( 1 4 , 1 0 ) ( 1 4 , 1 1 ) ( 1 4 , 1 2 ) ( 1 4 , 1 4 ) ( 1 4 , 1 5 )
( 1 4 , 1 6 ) ( 1 4 , 1 8 ) ( 1 4 , 1 9 ) ( 1 4 , 2 0 ) ( 1 5 , 1 4 ) ( 1 6 , 7 ) ( 1 6 , 1 4 ) ( 1 7 , 7 ) ( 1 7 , 1 4 ) ( 1 8 , 7 ) ( 1 8 , 1 4 ) ( 1 9 , 7 ) ( 1 9 , 1 4 ) ( 2 0 , 7 ) ( 2 0 , 1 4 )

1 . A open r e d box i s on t i l e ( 1 , 2 )
2 . A open y e l l o w box i s on t i l e ( 4 , 9 )
3 . A open b l u e box i s on t i l e ( 6 , 8 )
4 . A open grey box i s on t i l e ( 1 6 , 1 5 )
5 . A open grey box i s on t i l e ( 1 7 , 1 )
6 . A open r e d box i s on t i l e ( 2 0 , 6 )
7 . A c l o s e d b l u e door i s on t i l e ( 4 , 7 )
8 . A c l o s e d r e d door i s on t i l e ( 5 , 1 4 )
9 . A c l o s e d p u r p l e door i s on t i l e ( 7 , 8 )
1 0 . A c l o s e d b l u e door i s on t i l e ( 9 , 1 4 )
1 1 . A c l o s e d ye l l ow door i s on t i l e ( 1 3 , 7 )
1 2 . A c l o s e d ye l l ow door i s on t i l e ( 1 4 , 5 )
1 3 . A c l o s e d r e d door i s on t i l e ( 1 4 , 1 3 )
1 4 . A c l o s e d r e d door i s on t i l e ( 1 4 , 1 7 )
1 5 . A c l o s e d g rey door i s on t i l e ( 1 5 , 7 )
1 6 . A grey key i s on t i l e ( 5 , 2 0 )
1 7 . A ye l l ow key i s on t i l e ( 9 , 1 5 )
1 8 . A g r e e n key i s on t i l e ( 1 5 , 5 )
1 9 . A ye l l ow key i s on t i l e ( 1 6 , 1 2 )
2 0 . A g r e e n key i s on t i l e ( 1 7 , 1 5 )
2 1 . A r e d b a l l i s on t i l e ( 4 , 1 9 )
2 2 . A p u r p l e b a l l i s on t i l e ( 9 , 5 )
2 3 . A p u r p l e b a l l i s on t i l e ( 1 2 , 2 )
2 4 . A b l u e b a l l i s on t i l e ( 1 6 , 1 9 )
2 5 . I n v e n t o r y : [ ]
2 6 . The a g e n t i s c u r r e n t l y a t t h e f o l l o w i n g t i l e : ( 6 , 1 0 )
2 7 . The a g e n t i s f a c i n g up

Figure C.5. An example of BabyAI textualized state before state abstraction.

The f o l l o w i n g t i l e s a r e w a l l : ( 1 , 7 ) ( 1 , 1 4 ) ( 2 , 7 ) ( 2 , 1 4 ) ( 3 , 7 ) ( 3 , 1 4 ) ( 4 , 1 4 ) ( 5 , 7 ) ( 6 , 7 ) ( 6 , 1 4 ) ( 7 , 1 ) ( 7 , 2 ) ( 7 , 3 ) ( 7 , 4 ) ( 7 , 5 ) ( 7 , 6 )
( 7 , 7 ) ( 7 , 9 ) ( 7 , 1 0 ) ( 7 , 1 1 ) ( 7 , 1 2 ) ( 7 , 1 3 ) ( 7 , 1 4 ) ( 7 , 1 5 ) ( 7 , 1 6 ) ( 7 , 1 7 ) ( 7 , 1 8 ) ( 7 , 1 9 ) ( 7 , 2 0 ) ( 8 , 7 ) ( 8 , 1 4 ) ( 9 , 7 ) ( 1 0 , 7 ) ( 1 0 , 1 4 ) ( 1 1 , 7 )

( 1 1 , 1 4 ) ( 1 2 , 7 ) ( 1 2 , 1 4 ) ( 1 3 , 1 4 ) ( 1 4 , 1 ) ( 1 4 , 2 ) ( 1 4 , 3 ) ( 1 4 , 4 ) ( 1 4 , 6 ) ( 1 4 , 7 ) ( 1 4 , 8 ) ( 1 4 , 9 ) ( 1 4 , 1 0 ) ( 1 4 , 1 1 ) ( 1 4 , 1 2 ) ( 1 4 , 1 4 ) ( 1 4 , 1 5 )
( 1 4 , 1 6 ) ( 1 4 , 1 8 ) ( 1 4 , 1 9 ) ( 1 4 , 2 0 ) ( 1 5 , 1 4 ) ( 1 6 , 7 ) ( 1 6 , 1 4 ) ( 1 7 , 7 ) ( 1 7 , 1 4 ) ( 1 8 , 7 ) ( 1 8 , 1 4 ) ( 1 9 , 7 ) ( 1 9 , 1 4 ) ( 2 0 , 7 ) ( 2 0 , 1 4 ) .

The f o l l o w i n g t i l e s a r e o b s t a c l e s : ( 1 , 2 ) ( 4 , 9 ) ( 1 6 , 1 5 ) ( 1 7 , 1 ) ( 2 0 , 6 ) ( 5 , 2 0 ) ( 9 , 1 5 ) ( 1 5 , 5 ) ( 1 6 , 1 2 ) ( 1 7 , 1 5 ) .
The f o l l o w i n g t i l e s a r e c l o s e d d o o r s : ( 6 , 8 ) ( 4 , 7 ) ( 5 , 1 4 ) ( 6 , 8 ) ( 4 , 7 ) ( 5 , 1 4 ) ( 7 , 8 ) ( 9 , 1 4 ) ( 1 3 , 7 ) ( 1 4 , 5 ) ( 1 4 , 1 3 ) ( 1 4 , 1 7 ) ( 1 5 , 7 ) .
A g o a l o b j e c t i s on t h e t i l e ( 4 , 1 9 ) .
A g o a l o b j e c t i s on t h e t i l e ( 9 , 5 ) .
A g o a l o b j e c t i s on t h e t i l e ( 1 2 , 2 ) .
A g o a l o b j e c t i s on t h e t i l e ( 1 6 , 1 9 ) .
I n v e n t o r y : [ ] .
The a g e n t i s c u r r e n t l y a t t h e t i l e ( 6 , 1 0 ) .
The a g e n t i s f a c i n g up .

Figure C.6. Textualized state from C.5 after applying state abstraction for the goal “pick up a ball”.
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set of features relevant for goal-identifications is distinct, i.e. ∀sg1 ̸= sg2 ∈ S̃g, sg1,ϕ ̸= sg2,ϕ. This maximizes the chances of
including goal-states in S̃g , mitigating the potential issue of generating a highly-imbalanced dataset for training our proxy
neural networks.

In the second stage, a collection of neural networks Rθ( · ; g) : Sg → {0, 1} indexed by g ∈ Gtr is trained on the constructed
supervised datasets.

C.5.1. BABYAI ADAPTATION

In our experiments with the Baby AI environment, the state-labeling LLM is configured with parameters {temperature: 0,
top-k: 1, max tokens: 8000}, and we use the prompt template shown in Figure C.7.

The state representations are transformed from text to a grid format. The network architecture consists of a small convolu-
tional neural network with one convolutional layer (output dimension: 32, kernel size: (2,2)), followed by two linear layers
(hidden dimension: 32, output dimension: 1). A Sigmoid activation function is applied after the final linear layer, and ReLU
is used after all other layers. Dropout layers are added before each linear layer. The network is trained with the following
hyperparameters: learning rate of 1e-5, maximum of 3000 epochs, and dropout rate of 0.1. The dataset is split into training
and validation sets (90%/10%), and the model weights with the lowest validation loss are retained.

<|b e g i n o f t e x t |><| s t a r t h e a d e r i d |>system<|e n d h e a d e r i d |>You a r e a h e l p f u l and h o n e s t j u d g e o f good p r o g r e s s i n t h e M i n i g r i d /
BabyAI r e i n f o r c e m e n t l e a r n i n g e n v i r o n m e n t wi th r e s p e c t t o a s p e c i f i c GOAL. Always answer as h e l p f u l l y as p o s s i b l e , w h i l e
b e i n g t r u t h f u l , s i m p l e and c o n c i s e . I f you don ’ t know t h e answer t o a q u e s t i o n , don ’ t s h a r e f a l s e i n f o r m a t i o n .

<| e o t i d |><| s t a r t h e a d e r i d |>use r <|e n d h e a d e r i d |>I w i l l p r e s e n t you a GOAL t o be a c h i e v e d and t h e d e s c r i p t i o n s o f a STATE of
t h e e n v i r o n m e n t . Examples o f g o a l a r e ” open ing a door ” , ” go t o a s p e c i f i c l o c a t i o n ” , ” p u t t i n g an o b j e c t n e x t t o a n o t h e r
o t h e r ” o r ” p i c k i n g up an o b j e c t ” .

F i r s t , t e l l me a b o u t your knowledge of t h e M i n i g r i d / BabyAI r e i n f o r c e m e n t l e a r n i n g e n v i r o n m e n t r e l a t e d t o t h e g o a l .
Then , w r i t e an a n a l y s i s d e s c r i b i n g t h e s e m a n t i c s o f t h e s t a t e s t r i c t l y u s i n g i n f o r m a t i o n from t h e d e s c r i p t i o n and your

knowledge o f M i n i g r i d / BabyAI .
F i n a l l y , r e s p o n d by e x p l i c i t l y d e c l a r i n g i f t h e s t a t e i n d i c a t e s t h a t t h e GOAL has been a c h i e v e d a t any p o i n t i n t h e p a s t ,

w r i t i n g e i t h e r ( ” g o a l a c h i e v e d ” : True ) , o r ( ” g o a l a c h i e v e d ” : F a l s e ) . I f you have a doubt , you c o u l d a l s o say ( ” g o a l
a c h i e v e d ” : NA) .

The e n v i r o n m e n t i s a 22 by 22 t i l e s g r i d . An o b j e c t t h a t has been p i c k e d up i s p l a c e d i n t h e a g e n t i n v e n t o r y .

The a g e n t o r an o b j e c t i s c o n s i d e r e d a t an o b j e c t l o c a t i o n i f i t i s on an a d j a c e n t t i l e t o t h e o b j e c t ( f o r example , ( 4 , 2 ) and
( 5 , 3 ) a r e n o t a d j a c e n t a s t h e i r Manhat tan d i s t a n c e |4 −5| + |2 −3| = 2 i s s t r i c t l y s u p e r i o r t o 1 ) o r i t i s i n t h e i n v e n t o r y
. I f t h e g o a l e x p l i c i t l y m e n t i on s t h e a g e n t go ing t o an o b j e c t o r p u t t i n g an o b j e c t n e a r a n o t h e r o b j e c t , compute t h e
Manhat tan d i s t a n c e , show t h e d e t a i l s o f t h e compu ta t i on , e x p l i c i t l y compare t h e r e s u l t t o 1 and t h e n v e r i f y your
r e a s o n i n g does n o t have any m i s t a k e s and base your d e c i s i o n on ly on t h e Manhat tan d i s t a n c e . Don ’ t say t h e y a r e a d j a c e n t
i f t h e i r Manhat tan d i s t a n c e i s h i g h e r t h a n 1 . Don ’ t f o r g e t t o check t h e i n v e n t o r y . I f t h e c o o r d i n a t e s o f t h e d e s t i n a t i o n
a r e ment ioned , t h e a g e n t must go t o t h i s e x a c t t i l e .

For o t h e r t y p e s o f g o a l s , do n o t compute them and i g n o r e t h e p r e v i o u s p a r a g r a p h .

{”STATE ” : {state}}

{”GOAL” : {goal}}<| e o t i d |><| s t a r t h e a d e r i d |> a s s i s t a n t <|e n d h e a d e r i d |>

Figure C.7. Prompt template for labeling states as goal states or not for the BabyAI environment.

C.5.2. WEBSHOP ADAPTATION

In TEDUO Step 1, goal-conditioned reward labeling is performed by prompting an LLM to evaluate the alignment between
the instruction and the purchased product based on four criteria: category, attributes, options, and price. These criteria
directly influence the true reward function defined by the environment. The resulting scores are combined using the formula
specified in the WebShop environment to generate the synthetic reward. The prompt includes five example instruction
evaluations (see Figure C.8). We use Llama-3.1-70B-Instruct with the following parameters: {temperature: 0, top-k: 1, max
tokens: 100}. Since only terminal states (i.e., post-purchase states) require labeling in WebShop, the computational cost of
this step is significantly reduced.
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<|b e g i n o f t e x t |><| s t a r t h e a d e r i d |>system<|e n d h e a d e r i d |>You a r e a h e l p f u l and h o n e s t j u d g e o f t h e f i t be tween an i n s t r u c t i o n
f o r p u r c h a s i n g an o b j e c t and t h e p r o p o s e d o b j e c t . Your e v a l u a t i o n i s based on whe the r t h e o b j e c t meets f o u r c r i t e r i a :

c a t e g o r y , a t t r i b u t e s , o p t i o n s , and p r i c e . Fol low t h e s e s t e p s :

1 . I d e n t i f y A t t r i b u t e s and O p t i o n s

− L i s t t h e a t t r i b u t e s ment ioned i n t h e i n s t r u c t i o n .
− L i s t t h e o p t i o n s s e l e c t e d i n t h e i n s t r u c t i o n .

2 . E v a l u a t e Each C r i t e r i o n

− C a t e g o r y : Ass ign a v a l u e o f 1 i f t h e p r o p o s e d o b j e c t ’ s p r o d u c t c a t e g o r y matches t h e i n s t r u c t i o n ; o t h e r w i s e , a s s i g n 0 .
− A t t r i b u t e s : Count t h e number o f a t t r i b u t e s from t h e i n s t r u c t i o n t h a t a r e c o r r e c t l y matched by t h e p r o p o s e d o b j e c t .
− O p t i o n s : Count t h e number o f o p t i o n s s e l e c t e d by t h e u s e r t h a t a r e c o r r e c t l y matched by t h e p r o p o s e d o b j e c t .
− P r i c e : Ass ign a v a l u e o f 1 i f t h e p r o p o s e d o b j e c t ’ s p r i c e i s lower t h a n or e q u a l t o t h e p r i c e s p e c i f i e d i n t h e i n s t r u c t i o n ;

o t h e r w i s e , a s s i g n 0 .
<| e o t i d |><| s t a r t h e a d e r i d |>use r <|e n d h e a d e r i d |>{Example Instruction 1}}<| e o t i d |>
<| s t a r t h e a d e r i d |> a s s i s t a n t <|e n d h e a d e r i d |>{Example criteria 1}}<| e o t i d |>
<| s t a r t h e a d e r i d |>use r <|e n d h e a d e r i d |>{Example Instruction 2}}<| e o t i d |>
<| s t a r t h e a d e r i d |> a s s i s t a n t <|e n d h e a d e r i d |>{Example critera 2}}<| e o t i d |>
<| s t a r t h e a d e r i d |>use r <|e n d h e a d e r i d |>{Example Instruction 3}}<| e o t i d |>
<| s t a r t h e a d e r i d |> a s s i s t a n t <|e n d h e a d e r i d |>{Example criteria 3}}<| e o t i d |>
<| s t a r t h e a d e r i d |>use r <|e n d h e a d e r i d |>{Example Instruction 4}}<| e o t i d |>
<| s t a r t h e a d e r i d |> a s s i s t a n t <|e n d h e a d e r i d |>{Example criteria 4}}<| e o t i d |>
<| s t a r t h e a d e r i d |>use r <|e n d h e a d e r i d |>{Example Instruction 5}}<| e o t i d |>
<| s t a r t h e a d e r i d |> a s s i s t a n t <|e n d h e a d e r i d |>{Example criteria 5}}<| e o t i d |>
<| s t a r t h e a d e r i d |>use r <|e n d h e a d e r i d |>{GOAL}}<| e o t i d |>
<| s t a r t h e a d e r i d |> a s s i s t a n t <|e n d h e a d e r i d |>

Figure C.8. Prompt template for synthetic reward in the Webshop environment.

C.6. Step 2: Offline Reinforcement Learning

C.6.1. BABYAI ADAPTATION

In TEDUO’s step 2, the abstract MDPs are solved using tabular Q-learning. For each goal g, a Q-value table Qg of size
|Sg| × |A| is constructed. The Q-values are updated iteratively using the Bellman equation:

Qg
new[st, at]← (1− α)Qg[st, at] + α

(
rg[st, at] + γmax

a
Qg[st+1, a]

)
.

In our experiments for each environment, the learning rate α is set to 0.1, and the discount factor γ is set to 0.7. Subsequent
states st+1 are restricted to transitions observed in D. Iterations stop when ||Qg

new −Qg||∞ < ϵ, where ϵ = 1× 10−6.

C.6.2. WEBSHOP ADAPTATION

In the WebShop variant, given the deterministic nature of the environment and its unique starting state, we employ an
improved filtered Behavioral Cloning method to solve the abstract MDPs. For each training goal g, we identify the terminal
state with the highest reward rg among the collected samples. The corresponding trajectory is then refined by removing any
potential loops. Finally, trajectories with a synthetic reward below a predefined threshold (0.6) are discarded.

C.7. Step 3: LLM Fine-tuning

TEDUO’s step 3 involves fine-tuning a large language model using the generated supervised datasetDSFT . In this paper, the
fine-tuned model is Llama-3-8B-Instruct. We use Low-Rank Adaptation ((Hu et al., 2021)) to reduce the compute cost. The
hyperparameters used for the fine-tuning step are detailed in Table C.8. The model weights with the lowest validation loss
are retained. The fine-tunings have been realized on a cluster of 4 A100 (80GB VRAM). The computing power provided in
figure 5 is determined by multiplying the number of GPU hours by the peak Tflops (312 for A100 in bf16) and the estimated
utilization rate (90%).
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Table C.8. Fine-tuning hyperparameters
Hyperparameter Value BabyAI Value Webshop

Batch size (per device) 10 4
Learning rate 2e-5 2e-6
Maximum Gradient norm 0.3 0.3
Warmup ratio 0.01 0.01
Maximum number of epochs 3 20
LORA rank 512 512
LORA alpha 512 512
LORA dropout 0.1 0.1
Split train/val ratio 0.1 0.1
Tensor type bf16 bf16

<|b e g i n o f t e x t |><| s t a r t h e a d e r i d |>system<|e n d h e a d e r i d |>You a r e a R e i n f o r c e m e n t l e a r n i n g a g e n t i n t h e m i n i g r i d e n v i r o n m e n t .
You s e l e c t t h e s e q u e n c e o f o p t i m a l a c t i o n s t o a c h i e v e t h e GOAL. Always answer as h e l p f u l l y a s p o s s i b l e , w h i l e b e i n g
t r u t h f u l .<| e o t i d |><| s t a r t h e a d e r i d |>use r <|e n d h e a d e r i d |>The s t a t e o f t h e e n v i r o n m e n t i s g i v e n by t h e STATE . The
e n v i r o n m e n t i s a 22 by 22 t i l e s g r i d . The p o s s i b l e a c t i o n s a r e { 0 : t u r n l e f t , 1 : t u r n r i g h t , 2 : move f o r w a r d i n t h e
d i r e c t i o n f a c e d by t h e agen t , 3 : p i c k up an o b j e c t , 4 : d rop an o b j e c t , 5 : t o g g l e / a c t i v a t e an o b j e c t , 6 : done c o m p l e t i n g
t h e t a s k } .

You on ly o u t p u t t h e l i s t o f numbers a s s o c i a t e d wi th t h e o p t i m a l s e q u e n c e o f a c t i o n t o a c h i e v e t h e GOAL.

STATE : {state}

GOAL : {goal}.<| e o t i d |><| s t a r t h e a d e r i d |> a s s i s t a n t <|e n d h e a d e r i d |>

Figure C.9. This prompt template is employed to generate a sequence of optimal actions to achieve the given goal while being in the given
state for the BabyAI environment.

C.8. Evaluation Setup

C.8.1. BABYAI ADAPTATION

Environments. An environment in this context refers to a grid setup, which includes the arrangement of rooms, doors,
and objects. The training environments consist of the grid setups included D. This implementation uses 40 distinct
environments for training the model. Testing environments are entirely new grid setups not encountered during training. For
this benchmark, we utilize 2 different grid setups for testing.

Goals. Training goals are defined as the goal contained in Gtr, a subset of natural language instructions provided by BabyAI
without any modifications. Testing goals differ both grammatically and semantically from training goals. They are derived
from BabyAI’s original instructions, distinct from Gtr, and reformulated using alternative phrasings and synonyms. Tables
C.9, C.10, and C.11 provide the alternative formulations and synonyms for objects and colors used in these reformulations.

Baselines:

LLMs (vanilla). The vanilla Large Language Model baseline utilizes Llama-3-8B-Instruct or Llama-3-70B-Instruct
prompted with the template shown in Figure C.9. This prompt provides basic information about the environment, current
goal, and a textual (non abstracted) representation of the state.

LLMs (in-context + CoT). This baseline extends the vanilla LLM approach by using the prompt in Figure C.10, which
includes detailed environment information, similar to a game manual, as described in (Wu et al., 2023). It also integrates
expert demonstrations using textual grid examples and goals with their optimal action sequences. The CoT prompting
technique is employed to guide the LLM through multi-step reasoning and self-reflection.

BabyAI-IL-bot. This baseline employs the official implementation from (Chevalier-Boisvert et al., 2018) using Imitation
Learning (IL) with the largest default model parameters: memory dimension = 2028, recurrence = 80, batch size = 768,
instruction architecture = AttentionGRU, instruction dimension = 256, learning rate = 5× 10−5. Training is performed on
the supervised dataset DSFT from TEDUO step 2 instead of an expert demonstration dataset.
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The s t a t e o f t h e e n v i r o n m e n t i s g i v e n by t h e STATE . The e n v i r o n m e n t i s a {env [0 ]} by {env [1 ]} t i l e s g r i d . The p o s s i b l e a c t i o n s
a r e { 0 : t u r n l e f t , 1 : t u r n r i g h t , 2 : move f o r w a r d i n t h e d i r e c t i o n f a c e d by t h e agen t , 3 : p i c k up an o b j e c t , 4 : d rop an
o b j e c t , 5 : t o g g l e / a c t i v a t e an o b j e c t , 6 : done c o m p l e t i n g t h e t a s k } . An o b j e c t t h a t has been p i c k e d up i s p l a c e d i n t h e
a g e n t i n v e n t o r y . The a g e n t o r an o b j e c t i s c o n s i d e r e d a t an o b j e c t l o c a t i o n i f i t i s on an a d j a c e n t t i l e t o t h e o b j e c t (
For example , ( 4 , 2 ) and ( 5 , 3 ) a r e n o t a d j a c e n t a s t h e i r Manhat tan d i s t a n c e |4 −5| + |2 −3| = 2 i s s t r i c t l y s u p e r i o r t o 1 ) o r

i t i s i n t h e i n v e n t o r y . I f t h e c o o r d i n a t e s o f t h e d e s t i n a t i o n a r e ment ioned , t h e a g e n t must go t o t h i s e x a c t t i l e . Make
s u r e you a r e f a c i n g t h e r i g h t d i r e c t i o n b e f o r e u s i n g t h e a c t i o n ” 2 ” .

You on ly o u t p u t t h e l i s t o f numbers a s s o c i a t e d wi th t h e o p t i m a l s e q u e n c e o f a c t i o n t o a c h i e v e t h e GOAL.

To h e l p you a c h i e v i n g t h e GOAL, I p r o v i d e examples o f o p t i m a l s e q u e n c e s o f a c t i o n s f o r m u l t i p l e examples GOAL wi th d i f f e r e n t
examples STATE .

### Example 1 :

GOAL : {Example goal 1} .

STATE : {Example state 1} .

Sequence o f a c t i o n s : {Example action 1}

### Example 2 :

GOAL : {Example goal 2} .

STATE : {Example state 2} .

Sequence o f a c t i o n s : {Example action 2}

Now, I w i l l p r e s e n t you a GOAL t o be a c h i e v e d . F i r s t , t e l l me a b o u t your knowledge of t h e BabyAI r e i n f o r c e m e n t l e a r n i n g
e n v i r o n m e n t . Second , e x p l a i n how you can use t h e p r o p o s e d a c t i o n s t o move around t h e g r i d . Thi rd , s i m i l a r t o t h e example ,

o u t p u t a Python l i s t t h a t c o n t a i n s t h e s e q u e n c e o f a c t i o n keys (1 −6) chosen t o a c h i e v e t h e g o a l .

GOAL : {goal} .

STATE : {state} .

Figure C.10. This prompt template is employed to generate a sequence of optimal actions to achieve the given goal while being in the
given state. It uses in-context learning and CoT prompting for the BabyAI environment.

C.8.2. WEBSHOP ADAPTATION

Environment. Since the WebShop environment does not provide multiple configurations, our evaluation focuses on
generalization to new goals.

Goals. The training goals Gtr are a subset of the natural language instructions provided by the WebShop environment, used
without modification. Similarly, the testing goals form a distinct subset of instructions generated using different seeds while
ensuring no overlap with Gtr. Given the grammatical and semantic diversity of the instructions, we do not perform any goal
reformulation.

Baselines:

ReAct. This baseline leverages general-purpose LLMs with the ReAct prompting technique (Yao et al., 2023b), which is
state-of-the-art for low-data settings in this environment. ReAct enhances reasoning in LLMs by integrating reasoning traces
with action steps within the same prompt, enabling the model to reason through complex problems while simultaneously
retrieving and validating relevant information. This feedback loop improves both accuracy and coherence. Vanilla prompting
was excluded, as it failed to reach the purchasing step within the step limit (15), preventing it from achieving valid rewards.

Table C.9. Alternative formulations for the natural language commands.
Original instruction Alternative formulation
Go to the tile (X,Y) Move to the location at the coordinate (X,Y) / Reach the position at (X,Y) / Navigate to the point

(X,Y)

Pick up a X Grab a X / Acquire a X / collect a X

Go to a X Move to a X / Reach a X / Naviguate to a X

Open a X Push a X open / Swing open a X

Put a X next to a Y Set a X and a Y next to each other / Position a X alongside a Y / Place a X beside a Y
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Table C.10. Synonyms used for the objects.
Original word Synonyms

Box Container / Crate / Chest

Key Passcode / Lock-opener / Unlocker

Ball Sphere / Globe / Orb

Door Portal / Gate / Hatch

Table C.11. Synonyms used for the colors.
Original Color Synonyms

Blue Azure / Cobalt / Navy

Red Scarlet / Crimson / Ruby

Green Emerald / Jade / Lime

Yellow Golden / Amber / Canary

Purple Violet / Lavender / Mauve

Grey Ash / Charcoal / Silver
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