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Introduction Results

Informed machine-learning: from knowledge to 
inductive biases. Machine learning practitioners 
map expert knowledge  to prior probabilities over 
functions by manual model design. Regions of the 
function space with a non-zero prior probability 
define the hypothesis space and the relative 
probabilities of prior solutions dictate the inductive 
biases of the model. Knowledge about different 
learning tasks is associated with distinct inductive 
biases. 
Pros:  Models with well-designed task-specific 
biases require less training data and are more 
robust. 
Cons: Handcrafted biases require significant 
engineering efforts  and need to be customized for 
every new learning problem.

Meta-learning as inductive bias learning.  Instead 
of manual inductive bias specification, the paradigm 
of meta-learning proposes that inductive biases are 
meta-learned by training over a distribution of 
related tasks. 
Pros: Meta-learning enables flexible learning of 
complex inductive biases otherwise difficult to 
design by hand.
Cons: Success of meta-learners depends on the 
similarity of tasks at meta-train and test time. 
Heterogenous task distributions fail to provide strong 
inductive biases.

Informed meta-learning: towards automatic 
inductive bias specification. We want to retain the 
flexibility  of learning fine-grained and less formally 
stringent inductive biases and at the same time be 
able to guide the learner to the space of solutions 
agreeing with the prior knowledge of domain experts.
 

Space of all functions 
𝑓: 𝑋 → 𝑌

Representation space of 
expert knowledge

Concentrated meta distribution, provides strong 
inductive biases, so long as the task of interest 
belongs to the same environment as the tasks used 
during meta-training.

Heterogeneous environments span a wide range of 
functions, and thus support a wider range of tasks, 
at the cost of weaker inductive biases

Informed meta-learning allows to condition the 
meta-distribution on the expert knowledge, 
concentrating the meta-distribution around the 
task-relevant regions.

Method

Informed Neural Processes. We instantiate an informed meta-learner by extending the family of 
Neural Processes—probabilistic, fully amortized meta-learners.  

Informed meta-learning

corresponds to a subset Flinear ✓ F . This observation moti-
vates our focus on probabilistic methods while establishing
a first instantiation of an informed meta-learner. Given a col-
lection of training tasks and knowledge representations, we
will aim to find a suitable prior p(f), and learn to condition
it on various forms of knowledge (see Fig. 1(c)).

3. Informed Neural Processes

The family of Neural Processes (Garnelo et al., 2018a;b)
is one particular example of probabilistic, amortised meta-
learners, forming the foundation for our informed meta-
learner. We choose NPs as they reduce the cost of learning
to a feed-forward operation, eliminating the need for ex-
pensive gradient-based optimisation. NPs offer functional
flexibility, being suited to both regression and classification
tasks. Moreover, the fact that NPs model a distribution over
functions, instead of returning a single, MLE prediction en-
ables us to measure the reduction in uncertainty about solu-
tions given observed data, and in the informed meta-learning
scenario, reduction of uncertainty given expert knowledge.

Setup. Let T represent a learning task consisting of a con-
text DC = {(xi, yi)}ni=1 and target DT = {(xi, yi)}mi=n+1

data sets, aka training and validation sets. We assume that
data are generated according to the following process. Let
p(f) be a probability distribution over functions f , for-
mally known as a stochastic process, then for f ⇠ p(f),
set yi = f(xi) + ✏i, where ✏i stands for the observational
noise. Given a collection of training tasks, {Tj}j2J , and
their corresponding knowledge representations, {Kj}j2J ,
our goal is to train a model that makes predictions on un-
labelled target data points, given a small sample of context
points for any new task generated according to p(f).

Neural Process. NPs model the distribution over functions
f through a fixed dimensional latent variable z sampled
from a variational distribution q. That is, each sample z ⇠ q
corresponds to one realisation of the stochastic process. NPs
model the predictive posterior distribution as:

p(y | x,DC) := p(y | x, rC) :=
Z

p(y | x, z)q(z | rC)dz.
(3)

The variable rC is an aggregation of all observation in
DC , rC = 1

|C|
P

i2C h(xi, yi). The variational distribu-
tion q(z | r) is taken as Normal, q(z | r) = N (z;µz,�z),
with (µz,�z) = r. In the case of regression, we will assume
normal observational noise, i.e. p(y | x, z) = N (y;µy,�y),

†Let ⇥ be the parameter space of a model, with solutions
defined by f = h(· ; ✓) for a specific choice of ✓ 2 ⇥. If p✓ is
a prior distribution over ⇥, then the distribution over f can be
defined as follows. Let g(✓)(·) := h(· ; ✓), then f = g(✓) ⇠
g⇤(p✓), where g⇤(p✓) is the push-forward of p✓ defined by the
measurable function g : ⇥ ! F , a mapping from parameters to
functions that is assumed to be measurable.
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Figure 2. Graphical models. Comparison of NPs with INPs. Dark
grey nodes represent the observables.

with (µy,�y) = g(x, z), where g is a decoder network. In
this view, the meta-knowledge, !, can be represented with
the tuple ! = (g, h). During meta-training, NPs estimate
the prior distribution over all functions, p(f), and the con-
ditionals p(f | DC). Learning a single task corresponds
to computing the posterior p(f | DC), which is obtained
with a single forward pass through networks h and g. The
parameters of these two networks are estimated by episodic
training over a distribution of tasks.

Informed Neural Process. As discussed in section 2, ex-
ternal knowledge about a given learning task should allow
for concentrating the mass of p(f) around the region of
functions coherent with that knowledge. To achieve this, we
condition the variational distribution q on K and model the
predictive distribution as:

p(y | x,DC ,K) :=

Z
p(y | x, z)q(z | DC ,K)dz. (4)

From the implementation point of view, similarly to NPs,
INPs are also constructed with two networks: g and h.
However, in INPs, the outputs of h that parameterise the
variational distribution, q, are dependent on expert knowl-
edge K. Connecting the concepts from section 2, we have
that ! = ◆̇(K) = (g, h(· ;K)). In our implementation of
INPs, the fusion of knowledge with data is realised with
h(· ;K) = a(h1(·), h2(K)), where h1 and h2 represent data
and knowledge encoding networks, respectively, and a is
an aggregation operator. For precise implementation details
refer to appx. A.1. If we let rC = 1

|C|
P

i2C h1(xi, yi),
k = h2(K) and r0C = a(rC , k), INPs model (4) as:

p(y | x,DC ,K) := p(y | x, rC , k) (5)

= p(y | x, r0C) =
Z

p(y | x, z)q(z | r0C)dz. (6)

As in (Kim et al., 2019), if no data has been observed, we
can set the global data representation, rC , to a zero vec-
tor, approximating the prior distribution of f under expert
knowledge, p(f | K). Similarly, the conditioning on expert
knowledge can also be omitted by setting k = 0, resulting
in a purely data-driven, uninformed prediction p(f | DC).

Training. INPs are trained in an episodic fashion over a dis-
tribution of learning task Tj and their associated knowledge
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Model. (I)NPs model the distribution over functions through a fixed dimensional latent variable 
𝑧 sampled from a variational distribution 𝑞. INPs extend NPs by additionally conditioning 𝑞 on the 
information contained in expert knowledge. We model the predictive posterior distribution as: 

Training. INPs are trained in an episodic fashion over a distribution of learning task 𝒯𝑗 = {𝒟𝐶, 𝒟𝑇} 
and their associated knowledge representations 𝒦𝑗. Denoting by 𝑟𝐶 and 𝑟𝑇 the context and target data 
representations and by 𝑘 the knowledge embedding vector of a single task, parameters of the model 
are learned by maximising the expectation of ELBO over all training tasks, 

Informed meta-learning

A. Appendix

A.1. Architectural and training details for INPs

A.1.1. MODEL ARCHITECTURE

The architecture of INPs consists of the following key components:
• A data encoder, h1 : X ⇥ Y ! R

d that takes in pairs (xi, yi) and produces an order-invariant representation
r =

P
i h1(xi, yi).

• A knowledge encoder, h2, a map from the knowledge representation space to the latent space R
d that takes in the

knowledge inputs K and extracts a latent knowledge vector k = h2(K).

• An aggregator, a, that combines the data representation, r, and the latent knowledge representation, k, into one
representation, r0 = a(r, k), that parameterizes the latent distribution q. We take q(z | r0) = N (z;µz,�z), where
(µz,�z) = r0.

• A conditional decoder, g, that takes in samples of the global latent variable z ⇠ q(z | r0) and the new target location
x⇤ to output the predictions parameterised by p(y⇤ | x⇤, z) = N (y;µy,�y), where (µy,�y) = r0

Figure A.1. Overview of the INP model architecture.

In all experiments any MLP is implemented with the GELU non-linearity (Hendrycks & Gimpel, 2016). We experiment
with different forms of aggregation, a:

1. sum & MLP: a(r, k) = MLP(r + k),

2. concat & MLP: a(r, k) = MLP([r||k]),
3. MLP & FiLM: a(r, k) = FiLM(k) [MLP(r)]. We use the idea of modulation parameters introduced by (Perez et al.,

2018). Here a is an MLP whose parameters are modulated with a modulated with the outputs of h2.
We find that in most cases, the first, least complex option performs the best.

A.1.2. TRAINING

INPs are trained in an episodic fashion over a distribution of learning tasks consisting of context and target datasets, and
associated knowledge representations. Denoting by rC and rT the context and target data representations and by k the
knowledge embedding vector of a single task, we derive the evidence lower bound via:

p(yT | xT , rC , k) =

Z
p(yT |xT , z)q(z | rC , k)dz (9)

=

Z
p(yT | xT , z)

q(z | rC , k)
q(z | rT , k)

q(z | rT , k)dz (10)

= Eq(z|rT ,k)


p(yT | xT , z)

q(z | rC , k)
q(z | rT , k)

�
(11)

And therefore, by Jensen we obtain:

log p(yT | xT , rC , k) � Eq(z|rT ,k) [log p(yT | xT , z)]�DKL (q(z | rT , k) || q(z | rC , k)) (12)
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The night will start off cold with temperatures falling to -8.9°C 
by late morning, and then gradually rise to a high of 1.6°C in 
the late afternoon. Temperatures will start to drop again in the 
evening, reaching -3.1°C by midnight.

The night will start off chilly with temperatures around 0.5°C, 
but it will drop to -1.7°C by early morning. The day will 
gradually warm up, reaching a high of 5.1°C in the afternoon 
before cooling off to 1.0°C by midnight.

The night will be bitterly cold with temperatures around -18 
degrees, gradually increasing to -14 degrees by late afternoon. 
The temperature will slightly drop again to -15 degrees in the 
evening, warming up a bit to -14 degrees at midnight.
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The night will start off cold with temperatures falling to -16.8°C 
by dawn, and the day will continue to get colder, reaching a 
chilly -23.0°C by midnight. Afternoon temperatures will hover 
around -18.5°C, so bundle up if you're heading out.

Figure A.3. Extended Figure 7 with GPT-4 generated “weather forecasts” for setup B.

averaging sentence embedding of individual image captions belonging to the given class. We use human-generated captions
as collected in (Reed et al., 2016) and encode them using CLIP embeddings (Fu et al., 2022). Averaged per class text
embeddings are then stacked to form a N ⇥ dmodel, where dmodel = 512. In this setup, the knowledge encoder, h2 is a
2-layer MLP.

C: We use GPT-4 to generate individual descriptions of each class based on the human-generated image captions. We
present 5 randomly sampled image captions pertaining to one class and prompt GPT-4 to generate short descriptions of
features characteristic of the given bird breed.To generate the class descriptions, we use the following prompt format:

System: You are given 5 descriptions of a bird breed. Based on this information
generate one comprehensive description of the bird breed. Keep it short and
informative.

User: <<List of 5 randomly sampled image captions>>

In this setup, the knowledge encoder, h2 is the CLIP text encoder. The embeddings of class descriptions are obtained as the
average of all outputs from the last layer of CLIP. After stacking them together in a N ⇥ dmodel tensor, they are passed
through a linear projection layer.

For all setups, A, B, and C, the data encoder, h1 is implemented with a frozen CLIP vision model, followed by a linear
projection layer. Following the approach of Garnelo et al. (2018a), we only aggregate over inputs of the same class. The
aggregated class-specific representations are then concatenated to form the final representation of size N ⇥ d. We set
d = 512. We use the sum & 2-layer MLP aggregation a. We modify the decoder, g to return the logits of the categorical
distribution. For a N -way task with class labels c1, . . . , cN , we define p(y⇤ | x⇤, z) as:

p(y⇤ = cj | x⇤, z) =
exp(�wT

j x
⇤)

P
j0 exp(�w0T

j x⇤)
, [w1, . . . , wN ] = MLP(z), z 2 R

N⇥d,

where x⇤ is a CLIP image embedding from the target set. In our experiments, we use the Hugging Face implementation of
the CLIP ViT-B/32 model (https://huggingface.co/openai/clip-vit-base-patch32). We use a learning rate or 1e-4, batch size
of 32 and knowledge is randomly masked at rate 0.5. For setups A and B, the INP model is trained end-to-end. For setups C,
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The night will start off cold with temperatures falling to -8.9°C 
by late morning, and then gradually rise to a high of 1.6°C in 
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2-layer MLP.
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features characteristic of the given bird breed.To generate the class descriptions, we use the following prompt format:

System: You are given 5 descriptions of a bird breed. Based on this information
generate one comprehensive description of the bird breed. Keep it short and
informative.

User: <<List of 5 randomly sampled image captions>>

In this setup, the knowledge encoder, h2 is the CLIP text encoder. The embeddings of class descriptions are obtained as the
average of all outputs from the last layer of CLIP. After stacking them together in a N ⇥ dmodel tensor, they are passed
through a linear projection layer.

For all setups, A, B, and C, the data encoder, h1 is implemented with a frozen CLIP vision model, followed by a linear
projection layer. Following the approach of Garnelo et al. (2018a), we only aggregate over inputs of the same class. The
aggregated class-specific representations are then concatenated to form the final representation of size N ⇥ d. We set
d = 512. We use the sum & 2-layer MLP aggregation a. We modify the decoder, g to return the logits of the categorical
distribution. For a N -way task with class labels c1, . . . , cN , we define p(y⇤ | x⇤, z) as:

p(y⇤ = cj | x⇤, z) =
exp(�wT
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P
j0 exp(�w0T

j x⇤)
, [w1, . . . , wN ] = MLP(z), z 2 R

N⇥d,

where x⇤ is a CLIP image embedding from the target set. In our experiments, we use the Hugging Face implementation of
the CLIP ViT-B/32 model (https://huggingface.co/openai/clip-vit-base-patch32). We use a learning rate or 1e-4, batch size
of 32 and knowledge is randomly masked at rate 0.5. For setups A and B, the INP model is trained end-to-end. For setups C,
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Table A.1. Example images, image captions and GPT-generated class descriptions.

Sample Images Sample image captions GPT-generated class description

1. A large bird with a white belly, black

and white wings with a long beak.

2. This bird is white and grey in color with

a curved beak, and black eye rings.

3. A large bird with a white belly and face,

black back and wings, and peach bill.

4. Bird has gray body feathers, white

breast feather, and long beak

5. A medium sised bird with black wings,

and a bill that curves downwards

This bird breed is a medium to

large size, characterised by its

grey body feathers, contrasting

white belly and face, black back

and wings, distinctive black eye

rings, and a long, downward-

curving peach bill.

1. This big bird has a sharp beak and has

black covering its body.

2. An all black bird with a distinct thick,

rounded bill.

3. This entirely black bird has long and

wide rectrices relative to the size of its

body.

4. A black bird with a long tail and large

beak.

5. This black bird has sparse plumage and

a thick brown beak.

This bird breed is large and en-

tirely black with sparse plumage,

characterised by its thick brown

beak, long tail, and wide rectri-

ces relative to its body size.

1. This goofy looking bird sports webbed

feet and a bright orange bill, with pierc-

ing white eyes and a dull coat of gray.

2. A black bird with a small, orange beak

and a inverted feather curl at the base

of the beak.

3. A black body, white eye with stripe next

to it, and an orange bill are on this bird.

4. This black bird has a orange bill with

hair coming out of it, small pupils, and

a white line across its face.

5. This bird has wings that are black and

has an orange bill

This bird breed is characterised

by its black body, webbed feet,

a bright orange bill with an in-

verted feather curl at the base,

piercing white eyes with a dis-

tinctive stripe, and a dull grey

coat.

1. This is a black bird with a white spotted

belly and a white eye.

2. This bird is black with white and has a

very short beak.

3. This bird has wings that are black and

white and has a small bill

4. This small bird is white with black spots,

a white neck, and black around its eyes.

5. This is a short stocky bird with webbed

feet, it is mostly white with black wings

and black speckles throughout.

This bird breed features a black

body with a white and black

spotted underbelly, a white and

grey speckled chest, a black

crown, bright white eyes with

very small pupils, and a short,

pointed, black and orange bill.
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Data efficiency, robustness and uncertainty.

On a series of controlled synthetic experiments, we:
• Demonstrate how successful integration of oracle knowledge about the 

data generating process improves data efficiency  and mitigate the 
adverse effects of train-test distribution shift. 

• We derive methods to quantitatively measure the impact of expert 
knowledge on the reduction in epistemic uncertainty. 
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𝑓(𝑥) = 𝑎𝑥 + sin(𝑏𝑥) + 𝑐Informed meta-learning

representations Kj . To train and evaluate an INP model we
sample training, validation and testing collections of tasks.
Each task, (omitting the dependence on j for clarity), con-
sists of a labeled context dataset DC . and the target dataset
DT . The labels of the target dataset are the goal of each
prediction task. Denoting by rC and rT the context and tar-
get data representations and by k the knowledge embedding
vector of a single task, parameters of the model are learned
by maximising the expectation of ELBO over all training
tasks,

log p(yT |xT , rC , k) � Eq(z|rT ,k) [log p(yT | xT , z)] (7)
�DKL (q(z | rT , k) || q(z | rC , k)) . (8)

At each training iteration, the number of context and target
data points are chosen randomly. We also randomly mask
knowledge representations by setting k = 0. This allows
for the possibility of knowledge being missing at test time.
Further details on the derivation and estimation of the ELBO
loss can be found in appx. A.2.

4. Experiments

The experimental section is divided into two parts. First,
we anchor the key ideas of informed meta-learning on illus-
trative experiments with synthetic data, where knowledge
representations are well-structured and there exists an an-
alytic, closed-form expression linking knowledge with the
true data generating process (DGP). This serves to illustrate
the potential benefits of informed ML in terms of data effi-
ciency, uncertainty reduction, and robustness, and how these
can be measured. In the second part, we showcase possible
applications on real-world data where the underlying DGP
is unknown and knowledge may be loosely formatted, par-
ticularly, presented in natural language. Full experimental
details are presented in appx. A.2.

4.1. Part I: Illustrative experiments

4.1.1. DATA EFFICIENCY AND TASK DISTRIBUTION
SHIFT

Setup 1.: For each task, context, and target data
points are sampled according to the following pro-
cess. A function f is sampled from the family of
sinusoidal functions with a linear trend and bias,
f(x) = ax + sin(bx) + c, for some randomly sam-
pled values of the parameters a, b, c. We introduce a
Gaussian observational noise, s.t. yi = f(xi) + ✏i,
✏i ⇠ N (0, 0.2). The parameters a, b, c are randomly
sampled according to: a ⇠ U [�1, 1], b ⇠ U [0, 6],
c ⇠ U [�1, 1]. We let K encode the value of two, one
or none (K = ?) of the parameters a, b, or c. The
number of context points n ranges uniformly between
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Figure 3. Average log likelihood vs. number of context points. Left:
Comparison of plain NPs and INPs. Knowledge integration en-
hances data efficiency. Right: Performance under distribution shift
between meta-training and testing tasks. Knowledge integration
reduces the performance gap between training and testing tasks.

0 and 10; the number of targets is set to m = 100.
This setup simulates a scenario, in which K contains
partial, incomplete information about f . By training
over distribution of tasks T , we expect the model to
learn how to put a strong prior on the function’s slope,
level of oscillations and bias.

Fig. 3 (left) shows the estimated log-likelihood on the test
tasks against the number of context data points for both
the original NP model and the INP. Results for INP are
shown with knowledge presented at test time (K 6= ?) and
when it is omitted (K = ?). We observe that informing our
model significantly improves predictions. As the number
of context points decreases, the performance gap between
raw and informed predictions increases. Moreover, under
K = ?, our implementation of INPs performs on par with
vanilla NPs. Thus, the ability to condition the prior on
expert knowledge is not at the cost of reduced performance
of purely data-driven predictions.

To summarise the impact of knowledge on the predictive
performance of INPs we compute the relative �AUC score
defined as the integral of the “�-likelihood against n” (von
Rueden et al., 2023a), where “�-likelihood” is defined as:
p(DT |DC ,K) - p(DT |DC). We report relative values with
respect to the AUC of the uninformed predictions.Fig. 4
shows the estimated �AUC depending on which of the pa-
rameters a, b, or c have their values revealed at test time.
Intuitively, exposing more information about f should pro-
vide the model with stronger priors; thus, simplifying the
learning problem. As expected, when |K| = 2 the perfor-
mance gains are larger than when |K| = 1. Figure A.2
in the appendix shows qualitatively the impact of knowl-
edge on predictions and its integration with observed data;
knowledge provides information about the global behavior
of sampled functions while individual data points anchor
the predictions in the x-y plane.
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details are presented in appx. A.2.

4.1. Part I: Illustrative experiments

4.1.1. DATA EFFICIENCY AND TASK DISTRIBUTION
SHIFT

Setup 1.: For each task, context, and target data
points are sampled according to the following pro-
cess. A function f is sampled from the family of
sinusoidal functions with a linear trend and bias,
f(x) = ax + sin(bx) + c, for some randomly sam-
pled values of the parameters a, b, c. We introduce a
Gaussian observational noise, s.t. yi = f(xi) + ✏i,
✏i ⇠ N (0, 0.2). The parameters a, b, c are randomly
sampled according to: a ⇠ U [�1, 1], b ⇠ U [0, 6],
c ⇠ U [�1, 1]. We let K encode the value of two, one
or none (K = ?) of the parameters a, b, or c. The
number of context points n ranges uniformly between
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Figure 3. Average log likelihood vs. number of context points. Left:
Comparison of plain NPs and INPs. Knowledge integration en-
hances data efficiency. Right: Performance under distribution shift
between meta-training and testing tasks. Knowledge integration
reduces the performance gap between training and testing tasks.

0 and 10; the number of targets is set to m = 100.
This setup simulates a scenario, in which K contains
partial, incomplete information about f . By training
over distribution of tasks T , we expect the model to
learn how to put a strong prior on the function’s slope,
level of oscillations and bias.

Fig. 3 (left) shows the estimated log-likelihood on the test
tasks against the number of context data points for both
the original NP model and the INP. Results for INP are
shown with knowledge presented at test time (K 6= ?) and
when it is omitted (K = ?). We observe that informing our
model significantly improves predictions. As the number
of context points decreases, the performance gap between
raw and informed predictions increases. Moreover, under
K = ?, our implementation of INPs performs on par with
vanilla NPs. Thus, the ability to condition the prior on
expert knowledge is not at the cost of reduced performance
of purely data-driven predictions.

To summarise the impact of knowledge on the predictive
performance of INPs we compute the relative �AUC score
defined as the integral of the “�-likelihood against n” (von
Rueden et al., 2023a), where “�-likelihood” is defined as:
p(DT |DC ,K) - p(DT |DC). We report relative values with
respect to the AUC of the uninformed predictions.Fig. 4
shows the estimated �AUC depending on which of the pa-
rameters a, b, or c have their values revealed at test time.
Intuitively, exposing more information about f should pro-
vide the model with stronger priors; thus, simplifying the
learning problem. As expected, when |K| = 2 the perfor-
mance gains are larger than when |K| = 1. Figure A.2
in the appendix shows qualitatively the impact of knowl-
edge on predictions and its integration with observed data;
knowledge provides information about the global behavior
of sampled functions while individual data points anchor
the predictions in the x-y plane.
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From natural language to functional priors. In practical scenarios, 
predictive functions are difficult to model with closed-form mathematical 
expressions. The benefit of meta-learned prior is their functional 
flexibility. We show how INPs learn to map descriptions in natural 
language to functional priors.

Beyond 1D regression. We extend INPs to the task of few-shot 
classification with expert knowledge in the form class-level features or 
descriptions in natural language.  Successful alignment of knowledge and 
data representations facilitates robust generalization to new, previously 
unseen classes, zero-shot classification and improved few-shot 
classification accuracy. 

In informed meta-learning the mapping from 
knowledge to inductive biases, 𝒦 → 𝑝(𝑓 |𝒦), is 
meta-learned by training over multiple learning 
tasks and their representations of knowledge.
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