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Learning the inductive bias from human expert knowledge
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Introduction Results

Informed machine-learning: from knowledge to
inductive biases. Machine learning practitioners
map expert knowledge to prior probabilities over
functions by manual model design. Regions of the
function space with a non-zero prior probability

Data efficiency, robustness and uncertainty.
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Cons: Handcrafted biases require significant ,
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engineering efforts and need to be customized for expert knowledge On a series of controlled synthetic experiments, we:
every new learning problem. * Demonstrate how successful integration of oracle knowledge about the
data generating process improves data efficiency and mitigate the
adverse effects of train-test distribution shift.

i i . ) i p(f)  We derive methods to quantitatively measure the impact of expert
Meta-learning as inductive bias learning. Instead e knowledge on the reduction in epistemic uncertainty.
of manual inductive bias specification, the paradigm fr f* - :
. ] . ) 1 9 ypothesis space
of meta-learning prOppges that mductl.ve .blas.es are Concentrated meta distribution, provides strong
meta-learned by ftraining over a distribution of  jnquctive biases, so long as the task of interest
related tasks. belongs to the same environment as the tasks used

From natural language to functional priors. In practical scenarios,
predictive functions are difficult to model with closed-form mathematical
expressions. The benefit of meta-learned prior is their functional
flexibility. We show how INPs learn to map descriptions in natural
language to functional priors.

Pros: Meta-learning enables flexible learning of during meta-training.
complex inductive biases otherwise difficult to
design by hand.

Cons: Success of meta-learners depends on the
similarity of tasks at meta-train and test time.
Heterogenous task distributions fail to provide strong

* % .
inductive biases. .fl 13 .Hypothes1s space
Heterogeneous environments span a wide range of

functions, and thus support a wider range of tasks,
at the cost of weaker inductive biases
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. The night will start off cold with temperatures falling to -8.9°C
. ) \ by late morning, and then gradually rise to a high of 1.6°C in
w the late afternoon. Temperatures will start to drop again in the

evening, reaching -3.1°C by midnight.

Informed meta-learning: towards automatic 10 l el
. . . .gs . . The night will start off chilly with temperatures around 0.5°C,
|nd|.1crt.|ve bias spt.-:-mflt.:atlon.. We want to retain the - but it will drop o -1.7°C by early morning. The day will
flexibility of learning fine-grained and less formally 0 gradually warm up, reaching a high of 5.1°C in the afternoon
stringent inductive biases and at the same time be p(f [ K1) E bejore cooling off 1o 1.0°C by midnight
able to guide the learner to the space of solutions R — — 2
agreeing with the prior knowledge of domain experts. 17 , f2 Hypothesis space Eg The night will start oﬂcgld witﬁ temperatures falling to -16.8°C
\ Y —10 j by dawn, and the day will continue to get colder, reaching a
,'Cl Ko Knowledge space B A chilly -23.0°C by midnight. Aﬁgrnoon tempef’atures will hover
. . . . - —20 e, ' N around -18.5°C, so bundle up if you're heading out.
In informed meta-learning the mapping from Informed meta-learning allows to condition the - -
knowledge to inductive biases, X — p(f|X), is  meta-distribution on the expert knowledge,

) . . . . concentrating the meta-distribution around the : The night will be bitterly cold with temperatures around -18
meta learned. by training O'VGI' multiple learning k-rel & . -0 degrees, gradually increasing to -14 degrees by late afternoon.
tasks and their representations of knowledge. task-relevant regions. o AN The temperature will slightly drop again to -15 degrees in the

—20 evening, warming up a bit to -14 degrees at midnight.
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Beyond 1D regression. We extend INPs to the task of few-shot
classification with expert knowledge in the form class-level features or
descriptions in natural language. Successful alignment of knowledge and
data representations facilitates robust generalization to new, previously
unseen classes, zero-shot classification and improved few-shot
classification accuracy.

Informed Neural Processes. We instantiate an informed meta-learner by extending the family of

Neural Processes—probabilistic, fully amortized meta-learners.
Sample Images Sample image captions GPT-generated class description

[E—

Model. (I)NPs model the distribution over functions through a fixed dimensional latent variable —
z sampled from a variational distribution g. INPs extend NPs by additionally conditioning g on the ; %
information contained in expert knowledge. We model the predictive posterior distribution as:

. A large bird with a white belly, black  This bird breed is a medium to

and white Wil’lgS with a long beak. large size, characterised by its
grey body feathers, contrasting
white belly and face, black back

_ . ' and wings, distinctive black eye
3. A large bird with a white belly and face, rings, and a long, downward-

black back and wings, and peach bill. curving peach bill.

2. This bird is white and grey in color with
a curved beak, and black eye rings.

4. Bird has gray body feathers, white
breast feather, and long beak

p(y | z,Dc,K) := /p(y | z,2)q(z | Do, K)dz.

5. A medium sised bird with black wings,
and a bill that curves downwards

Training. INPs are trained in an episodic fashion over a distribution of learning task J ; = {De, Dr}

and their associated knowledge representations j(j. Denoting by r~ and rthe context and target data 1. This big bird has a sharp beak and has  This bird breed is large and en-

representations and by k£ the knowledge embedding vector of a single task, parameters of the model black covering its body. tigely blaCkvzlitZ sparze_pkh;mage,
. _ . . . ; : ot H cnaracterise 'y its thic rown
are learned by maximising the expectation of ELBO over all training tasks, 2 fo’zgfllezlg;f bird with a distinct thick, & tong tail, and wide rectri-

_ . _ ces relative to its body size.
3. This entirely black bird has long and

wide rectrices relative to the size of its
body.

4. A black bird with a long tail and large
beak. Read the full paper:

5. This black bird has sparse plumage and
a thick brown beak.

logp(yr | x7,rc, k) = Eqgzprr k) logp(yr | 27, 2)] — Dk (q(2 | r7, k) || 9(2 | e, k))




