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Abstract

In noisy and low-data regimes prevalent in real-
world applications, a key challenge of machine
learning lies in effectively incorporating inductive
biases that promote data efficiency and robust-
ness. Meta-learning and informed ML stand out
as two approaches for incorporating prior knowl-
edge into ML pipelines. While the former relies
on a purely data-driven source of priors, the lat-
ter is guided by prior domain knowledge. In this
paper, we formalise a hybrid paradigm, informed
meta-learning, facilitating the incorporation of
priors from unstructured knowledge representa-
tions, such as natural language; thus, unlocking
complementarity in cross-task knowledge sharing
of humans and machines. We establish the foun-
dational components of informed meta-learning
and present a concrete instantiation of this frame-
work—the Informed Neural Process. Through a
series of experiments, we demonstrate the poten-
tial benefits of informed meta-learning in improv-
ing data efficiency, robustness to observational
noise and task distribution shifts.

1. Introduction
Designing machine learning models that generalise well re-
quires finding a balance between two properties of a model:
its support and inductive biases that guide the learning algo-
rithm towards specific solutions (Wilson & Izmailov, 2020).
Currently, the field favors models with large support, such
as deep neural networks—universal approximators capa-
ble of fitting any continuous function (Hornik et al., 1989).
However, these universal architectures lack task-specific
inductive biases, demanding vast amounts of training data
(Welling, 2019). In practical scenarios, where collecting
a substantial training dataset is often impractical, human
expertise becomes indispensable. Drawing from past expe-

1Department of Applied Mathematics and Theoretical Physics,
University of Cambridge, Cambridge, UK. Correspondence to:
Katarzyna Kobalczyk <knk25@cam.ac.uk>.

Accepted by the SPIGM workshop of ICML 2024, Vienna, Austria.
Copyright 2024 by the author(s).

riences and contextual knowledge beyond observable data,
experts may offer helpful insights about inductive biases
suitable for the task at hand.

Conventionally, equipping ML models with prior knowl-
edge about the learning task has been a manual process
executed by practitioners based on their own knowledge
and intuition or in collaboration with domain experts. The
subfield of informed machine learning focuses specifically
on designing models with explicit inductive biases derived
from formal knowledge representations (von Rueden et al.,
2023b). Such formal representations may take various forms
including mathematical expressions (Karpatne et al., 2017;
Qian et al., 2021), simulation results (Rai et al., 2019; Shen
et al., 2020), knowledge graphs (Choi et al., 2017; Zhang
et al., 2019), logic rules (Yang et al., 2023; Richardson &
Domingos, 2006), or spatial invariances (Wu et al., 2018;
Bogatskiy et al., 2020).

Despite many successes, informed ML methods are limited
by researchers’ abilities to comprehend and formalise ex-
pert knowledge and design a learning method accordingly.
Hand-crafted bias specification methods offer control and
explainability but demand extensive engineering and com-
munication efforts between domain experts and ML practi-
tioners. While some inductive biases can be easily encoded
(e.g. with convolutions or custom loss functions), prefer-
ences over competing hypothesis can often be challenging
to formalise and manually integrate into ML methods; with
the integration step often forming the core contribution of
ML papers (Goyal & Bengio, 2020).

Meta-learning is an alternative approach to inductive bias
specification imitating human systematic generalisation
based on previously solved tasks. This paradigm involves
learning from a distribution of related tasks, aka environ-
ment, allowing the learner to acquire prior knowledge suited
for solving new tasks. Yet, defining task relatedness lacks
clarity and often depends on the particular algorithm and
the surrounding context beyond the observable data. While
there exist theoretical guarantees of successful knowledge
transfer and generalisation (Baxter, 2000; Guan & Lu, 2022),
they rely on the assumption that training and test tasks come
from the same distribution, which is hard to meet in practice.
If the environment changes, model performance often drops
significantly (Chen et al., 2019; Li et al., 2019).
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Table 1. Comparison of ML paradigms. Solid lines in the overview
diagrams represent fixed components of the ML pipeline. Dashed
lines represent meta-learned components. Different learning ap-
proaches are distinguished by the following factors: (1) Inductive
biases of a model depend on a formal representation of knowledge.
(2) Inductive biases of the learning algorithm are learned from a
pre-defined task distribution. (3) Inductive biases can be controlled
by the domain expert knowledge post model training.

Method Overview Prototypes (1) (2) (3)

C
on

v. Sup. D Aω f̂
NN, BNN,

GP ✗ ✗ ✗

Meta D Aω f̂
ProtoNet,

MAML, NP ✗ ✓ ✗

In
fo

rm
ed Sup.

D Aω f̂

K ι̇

PINN, BN,
G-CNN ✓ ✗ ✗

Meta
D Aω f̂

K ι̇

INP (Ours) ✓ ✓ ✓

Recognising the functional flexibility of meta-learning meth-
ods in acquiring inductive biases of various forms, we pro-
pose a new learning paradigm, informed meta-learning, in
which the knowledge integration process is meta-learned
by training on a distribution of learning tasks and their re-
spective knowledge representations. The complementarity
of informed ML and meta-learning is twofold:
▶ In contrast to conventional informed ML, the process of

knowledge integration is not fixed but meta-learned based
on the previously observed tasks and their correspond-
ing knowledge representations, enabling the integration
of prior knowledge represented with varying levels of
formalism, including natural language.

▶ Formal knowledge representations condition the task and
thus inform about task similarity, mitigating the adverse
effects of task distribution shifts and heterogeneity.

Contributions: This paper introduces the paradigm of in-
formed meta-learning, a novel approach to inductive bias
specification utilising human knowledge in various forms,
including unstructured natural language. We present the
Informed Neural Process as a proof of concept, empirically
demonstrating the advantages of informed meta-learning in
enhancing data efficiency and robustness to observational
noise, task distribution shifts, and task heterogeneity. While
previous studies have integrated informed ML with meta-
learning in specific domains like physics (Belbute-Peres
et al., 2021; Qin et al., 2022; Huang et al., 2022), our work
for the first time formalises the generalised paradigm, re-
maining agnostic to knowledge representation formats. Our
unique contributions lies in proposing to leverage meta-
learning for a seamless integration of human knowledge in
its native formats into machine learning algorithms.

2. Formalising Informed Meta-Learning
We begin by formally describing two supervised learning ap-
proaches: meta-learning and informed ML, before introduc-
ing the concept of informed meta-learning. Table 1 provides
a condensed overview of the methodological distinctions
between these learning paradigms. Refer to Appendix A.3
for a further comparisons with related work.

In a supervised setup, we are given a training dataset D =
{(xi, yi)}ni=1 and aim to fit a predictive function f̂ : X →
Y , or in a probabilistic setting, find a posterior distribution
over functions p(f | D). The learning algorithm, A, is
a mapping from the observation space to the hypothesis
space, A : (X × Y)n → F ,D 7→ f̂ (stochastic learners
can be treated by assuming a distribution-valued A). In this
view, A is seen as all steps leading to the final hypothesis f̂ ,
including i.a. data pre-processing, model architecture, loss
function, and regularisation.

Meta-learning. The efficacy of A relies on the “how to
learn” aspect—the inductive biases induced by all of its com-
ponents. Conventionally, these are fixed and pre-specified.
Meta-learning is an alternative approach, in which parts of
the learning algorithm are learned by maximising the ex-
pected performance of A on a distribution of related tasks
p(T ). Each task T is defined by a data distribution on X×Y ,
from which a task dataset D is sampled. We let ω denote the
learnable component of the algorithm and the dependence
of A on ω by a subscript Aω. To find a good choice of
ω, we assume access to a collection of meta-training tasks,
{Tj}j∈J , Tj ∼ p(T ) and frame “learning how to learn” as
an optimisation problem (Hospedales et al., 2022):

ω∗ = argmax
ω

p (ω | {Tj : j ∈ J }) . (1)

ω∗ is commonly referred to as the meta-knowledge or cross-
task knowledge. Once chosen, ω∗ remains the same for
solving any task T ∼ p(T ) and solutions are obtained with
the learner Aω∗ , as f̂ = Aω∗(D). Popular examples of
meta-learning methods include MAML (Finn et al., 2017),
where ω is the initialisation of a neural network or proto-
typical networks (ProtoNet (Sung et al., 2018)) where ω
stands for an embedding function shared among all tasks.
Importantly, the meta-learned representation ω is mostly
data-driven and dependent on the selection of the meta-
training tasks {Tj}j∈J . Consequently, the influence of
in-domain expert knowledge on model’s inductive biases
remains minimal.

Informed Machine Learning. In contrast, in informed
ML, the learning algorithm is explicitly dependent on ex-
pert knowledge given by a formal representation, which we
denote as K. Alongside the dataset D, knowledge K creates
an additional and independent source of information that
is explicitly integrated into the learning algorithm. Unlike
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Hypothesis space

(a) Concentrated meta distribution provides strong inductive
biases, as long as the task of interest belongs to the same envi-
ronment as the training tasks.

Hypothesis space

(b) Heterogeneous meta distribution supports a wider range of
tasks, at the cost of weaker inductive biases.

Knowledge space

Hypothesis space

(c) Informed meta-learning conditions the meta-distribution on
prior knowledge K. In result, the meta-distribution concentrates
around the regions of the hypothesis space surrounding the true
solution, providing strong inductive biases.

Figure 1. Probabilistic perspective on (informed) meta-learning
(see appx. A.4).

empirical data, which may be noisy, knowledge, is a form
of true and already validated information. Its meaning
with respect to the learning task is a priori known by the
modeller. The correctness of knowledge and its relevance
provide grounding for the ML method, often leading to an
improved performance over purely data-driven models. Let
ω denote the part of the learning algorithm in which knowl-
edge K is integrated, then we may represent this explicit
dependence of A on K via a Aω, where ω = ι̇(K). Here ι̇
is a loosely defined map from prior knowledge K to a part
of the learning algorithm. The knowledge integration pro-
cess, ι̇, is conventionally performed by the machine learning
practitioner. Representations of K and ω manifest in vari-
ous forms. In physics-informed neural networks (PINNs)
(Raissi et al., 2019) knowledge is represented by algebraic
equations and integrated with the means of an additional
regularisation term; in Bayesian Networks (BNs) (Constanti-
nou et al., 2016) knowledge is represented by probabilistic
relations between random variables, constraining the hy-
pothesis space; knowledge represented by invariances may
define new model architectures like, e.g. group-equivariant
CNNs (G-CNNs) (Cohen & Welling, 2016).

Informed meta-learning. Both approaches of meta-
learning and informed ML aim to integrate a form of prior
knowledge into the learning algorithm. In meta-learning,
this prior knowledge is defined by a collection of meta-

training tasks {Tj}j∈J . In informed ML, it is given by a
formal representation K. Informed meta-learning takes a
hybrid approach in which the process of prior knowledge in-
tegration, ι̇, is meta-learned based on a collection of training
tasks {Tj}j∈J and their corresponding knowledge repre-
sentations {Kj}j∈J . As previously, let ω represent the
part of the learning algorithm in which prior knowledge is
integrated, then informed meta-learning reduces to:

ι̇∗ = argmax
ι̇

p(ι̇ | {Tj ,Kj : j ∈ J }), (2)

where the solution to a learning task T and its correspond-
ing knowledge representation K is obtained via Aω∗ with
ω∗ = ι̇∗(K). Precise formulations of the objective in (2)
depend both on ω and ι̇. Section 3 introduces one particular
instantiation of informed meta-learning, based on a proba-
bilistic approach to meta-learning. Below, we elaborate on
our motivation behind this particular choice.

Perhaps the most popular meta-learning framework is that
of gradient-based optimisation (Finn et al., 2017) with the
goal of finding an optimal weight initialisation (ω = θ0)
for a model h(· ; θ) with parameters θ ∈ Θ. This involves
estimating θ0 based on the training tasks, where the solution
for each task is obtained by a few steps of gradient descent
with respect a loss function L evaluated on the task-specific
dataset D; i.e., Aω(D) = h(· ;ω − α∇L(D)). An alter-
native approach to meta-learning is that of inductive bias
learning, as originally formalised by Baxter (1997). This
method aims to choose a suitable prior pθ over the param-
eter space Θ from a predefined collection of priors using
hierarchical Bayesian inference. While seemingly distinct,
gradient-based meta-learning can be recast under the hier-
archical Bayesian framework (Grant et al., 2018). We thus
view the probabilistic approach as more general.

Abstracting away model parameterisation details†, the goal
of meta-learning is then to learn a suitable prior over the
hypothesis space, p(f), based on the training tasks {Tj}j∈J .
In this view, the meta-learned ω represents the learned prior
and the stochastic learner Aω maps a task-specific dataset
D to the posterior p(f | D). Figures 1(a), 1(b) illustrate
the idea of learning a prior via sampling a fixed number
of tasks from the environment. It also highlights the trade-
offs between well-concentrated and heterogeneous meta
distributions.

In the context of informed meta-learning, probabilistic ap-
proaches may prove particularly advantageous. On one
hand, such methods enable the sampling of multiple solu-
tions, spanning a region of the hypothesis space, F , instead
of returning a single MLE estimate. On the other hand, we
posit that expert knowledge K is often conceptual in nature
and thus corresponds to entire regions of the hypothesis
space rather than precise solutions f̂ ∈ F . For instance, if
K requires that the fitted function is linear, this specification
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corresponds to a subset Flinear ⊆ F . This observation moti-
vates our focus on probabilistic methods while establishing
a first instantiation of an informed meta-learner. Given a col-
lection of training tasks and knowledge representations, we
will aim to find a suitable prior p(f), and learn to condition
it on various forms of knowledge (see Fig. 1(c)).

3. Informed Neural Processes
The family of Neural Processes (Garnelo et al., 2018a;b)
is one particular example of probabilistic, amortised meta-
learners, forming the foundation for our informed meta-
learner. We choose NPs as they reduce the cost of learning
to a feed-forward operation, eliminating the need for ex-
pensive gradient-based optimisation. NPs offer functional
flexibility, being suited to both regression and classification
tasks. Moreover, the fact that NPs model a distribution over
functions, instead of returning a single, MLE prediction en-
ables us to measure the reduction in uncertainty about solu-
tions given observed data, and in the informed meta-learning
scenario, reduction of uncertainty given expert knowledge.

Setup. Let T represent a learning task consisting of a con-
text DC = {(xi, yi)}ni=1 and target DT = {(xi, yi)}mi=n+1

data sets, aka training and validation sets. We assume that
data are generated according to the following process. Let
p(f) be a probability distribution over functions f , for-
mally known as a stochastic process, then for f ∼ p(f),
set yi = f(xi) + ϵi, where ϵi stands for the observational
noise. Given a collection of training tasks, {Tj}j∈J , and
their corresponding knowledge representations, {Kj}j∈J ,
our goal is to train a model that makes predictions on un-
labelled target data points, given a small sample of context
points for any new task generated according to p(f).

Neural Process. NPs model the distribution over functions
f through a fixed dimensional latent variable z sampled
from a variational distribution q. That is, each sample z ∼ q
corresponds to one realisation of the stochastic process. NPs
model the predictive posterior distribution as:

p(y | x,DC) := p(y | x, rC) :=
∫

p(y | x, z)q(z | rC)dz.
(3)

The variable rC is an aggregation of all observation in
DC , rC = 1

|C|
∑

i∈C h(xi, yi). The variational distribu-
tion q(z | r) is taken as Normal, q(z | r) = N (z;µz, σz),
with (µz, σz) = r. In the case of regression, we will assume
normal observational noise, i.e. p(y | x, z) = N (y;µy, σy),

†Let Θ be the parameter space of a model, with solutions
defined by f = h(· ; θ) for a specific choice of θ ∈ Θ. If pθ is
a prior distribution over Θ, then the distribution over f can be
defined as follows. Let g(θ)(·) := h(· ; θ), then f = g(θ) ∼
g∗(pθ), where g∗(pθ) is the push-forward of pθ defined by the
measurable function g : Θ → F , a mapping from parameters to
functions that is assumed to be measurable.

xi

yi z yi

xi

i ∈ C i ∈ T

(a) NP

xi

yi

K

z yi

xi

k

i ∈ C i ∈ T

(b) Informed NP

Figure 2. Graphical models. Comparison of NPs with INPs. Dark
grey nodes represent the observables.

with (µy, σy) = g(x, z), where g is a decoder network. In
this view, the meta-knowledge, ω, can be represented with
the tuple ω = (g, h). During meta-training, NPs estimate
the prior distribution over all functions, p(f), and the con-
ditionals p(f | DC). Learning a single task corresponds
to computing the posterior p(f | DC), which is obtained
with a single forward pass through networks h and g. The
parameters of these two networks are estimated by episodic
training over a distribution of tasks.

Informed Neural Process. As discussed in section 2, ex-
ternal knowledge about a given learning task should allow
for concentrating the mass of p(f) around the region of
functions coherent with that knowledge. To achieve this, we
condition the variational distribution q on K and model the
predictive distribution as:

p(y | x,DC ,K) :=

∫
p(y | x, z)q(z | DC ,K)dz. (4)

From the implementation point of view, similarly to NPs,
INPs are also constructed with two networks: g and h.
However, in INPs, the outputs of h that parameterise the
variational distribution, q, are dependent on expert knowl-
edge K. Connecting the concepts from section 2, we have
that ω = ι̇(K) = (g, h(· ;K)). In our implementation of
INPs, the fusion of knowledge with data is realised with
h(· ;K) = a(h1(·), h2(K)), where h1 and h2 represent data
and knowledge encoding networks, respectively, and a is
an aggregation operator. For precise implementation details
refer to appx. A.1. If we let rC = 1

|C|
∑

i∈C h1(xi, yi),
k = h2(K) and r′C = a(rC , k), INPs model (4) as:

p(y | x,DC ,K) := p(y | x, rC , k) (5)

= p(y | x, r′C) =
∫

p(y | x, z)q(z | r′C)dz. (6)

As in (Kim et al., 2019), if no data has been observed, we
can set the global data representation, rC , to a zero vec-
tor, approximating the prior distribution of f under expert
knowledge, p(f | K). Similarly, the conditioning on expert
knowledge can also be omitted by setting k = 0, resulting
in a purely data-driven, uninformed prediction p(f | DC).

Training. INPs are trained in an episodic fashion over a dis-
tribution of learning task Tj and their associated knowledge
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representations Kj . To train and evaluate an INP model we
sample training, validation and testing collections of tasks.
Each task, (omitting the dependence on j for clarity), con-
sists of a labeled context dataset DC . and the target dataset
DT . The labels of the target dataset are the goal of each
prediction task. Denoting by rC and rT the context and tar-
get data representations and by k the knowledge embedding
vector of a single task, parameters of the model are learned
by maximising the expectation of ELBO over all training
tasks,

log p(yT |xT , rC , k) ≥ Eq(z|rT ,k) [log p(yT | xT , z)] (7)
−DKL (q(z | rT , k) || q(z | rC , k)) . (8)

At each training iteration, the number of context and target
data points are chosen randomly. We also randomly mask
knowledge representations by setting k = 0. This allows
for the possibility of knowledge being missing at test time.
Further details on the derivation and estimation of the ELBO
loss can be found in appx. A.2.

4. Experiments
The experimental section is divided into two parts. First,
we anchor the key ideas of informed meta-learning on illus-
trative experiments with synthetic data, where knowledge
representations are well-structured and there exists an an-
alytic, closed-form expression linking knowledge with the
true data generating process (DGP). This serves to illustrate
the potential benefits of informed ML in terms of data effi-
ciency, uncertainty reduction, and robustness, and how these
can be measured. In the second part, we showcase possible
applications on real-world data where the underlying DGP
is unknown and knowledge may be loosely formatted, par-
ticularly, presented in natural language. Full experimental
details are presented in appx. A.2.

4.1. Part I: Illustrative experiments

4.1.1. DATA EFFICIENCY AND TASK DISTRIBUTION
SHIFT

Setup 1.: For each task, context, and target data
points are sampled according to the following pro-
cess. A function f is sampled from the family of
sinusoidal functions with a linear trend and bias,
f(x) = ax + sin(bx) + c, for some randomly sam-
pled values of the parameters a, b, c. We introduce a
Gaussian observational noise, s.t. yi = f(xi) + ϵi,
ϵi ∼ N (0, 0.2). The parameters a, b, c are randomly
sampled according to: a ∼ U [−1, 1], b ∼ U [0, 6],
c ∼ U [−1, 1]. We let K encode the value of two, one
or none (K = ∅) of the parameters a, b, or c. The
number of context points n ranges uniformly between
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Figure 3. Average log likelihood vs. number of context points. Left:
Comparison of plain NPs and INPs. Knowledge integration en-
hances data efficiency. Right: Performance under distribution shift
between meta-training and testing tasks. Knowledge integration
reduces the performance gap between training and testing tasks.

0 and 10; the number of targets is set to m = 100.
This setup simulates a scenario, in which K contains
partial, incomplete information about f . By training
over distribution of tasks T , we expect the model to
learn how to put a strong prior on the function’s slope,
level of oscillations and bias.

Fig. 3 (left) shows the estimated log-likelihood on the test
tasks against the number of context data points for both
the original NP model and the INP. Results for INP are
shown with knowledge presented at test time (K ≠ ∅) and
when it is omitted (K = ∅). We observe that informing our
model significantly improves predictions. As the number
of context points decreases, the performance gap between
raw and informed predictions increases. Moreover, under
K = ∅, our implementation of INPs performs on par with
vanilla NPs. Thus, the ability to condition the prior on
expert knowledge is not at the cost of reduced performance
of purely data-driven predictions.

To summarise the impact of knowledge on the predictive
performance of INPs we compute the relative ∆AUC score
defined as the integral of the “∆-likelihood against n” (von
Rueden et al., 2023a), where “∆-likelihood” is defined as:
p(DT |DC ,K) - p(DT |DC). We report relative values with
respect to the AUC of the uninformed predictions.Fig. 4
shows the estimated ∆AUC depending on which of the pa-
rameters a, b, or c have their values revealed at test time.
Intuitively, exposing more information about f should pro-
vide the model with stronger priors; thus, simplifying the
learning problem. As expected, when |K| = 2 the perfor-
mance gains are larger than when |K| = 1. Figure A.2
in the appendix shows qualitatively the impact of knowl-
edge on predictions and its integration with observed data;
knowledge provides information about the global behavior
of sampled functions while individual data points anchor
the predictions in the x-y plane.
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{a} {b} {c} {a,b} {b,c} {a,c}
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Figure 4. Average relative improvement of informed predictions
vs. uninformed predictions by knowledge format.

Setup 2.: Performance of meta-learners often drops
drastically in the presence of a distribution shift be-
tween training and testing tasks (Chen et al., 2019).
In this experiment, we simulate a distribution shift of
this type. Keeping everything else equal as in setup
1., for the training tasks, we sample b ∼ N (2, 1), and
for testing tasks we let b ∼ N (3, 1). We let K encode
the true value of b.

Fig. 3 (right) shows how the performance gap between train-
ing and testing tasks is significantly reduced upon informing
the model about the true value of b, which is the source of
the distribution shift between training and testing tasks.

Take-aways: The first experiment illustrates how a
successful integration of oracle knowledge about the
learning task, impacts data efficiency. In cases when
such knowledge is not available, we show that INP
does not fall short of the purely data-driven NP. We
also demonstrate how data efficiency gains depend
on the type of information carried by K, and how this
can be measured quantitatively. Finally, we illustrate
how oracle knowledge about the given learning task
may prove useful in mitigating the adverse effects of
distribution mismatch between training and testing
tasks.

4.1.2. KNOWLEDGE AND UNCERTAINTY REDUCTION

NPs, chosen as the foundation for our informed meta-learner,
possess a key feature: the capability to sample from the so-
lution space, instead of providing a single point estimate.
This enables us to measure the decrease in model uncer-
tainty when incorporating expert knowledge. Our focus is
primarily on measuring epistemic uncertainty—the uncer-
tainty stemming from a lack of knowledge about the true
relationship between model inputs and outputs, rather than
the inherent randomness of the process.

We compute the predictive uncertainty as the conditional
entropy, H[y∗ | x∗,K], at a specific location x∗ ∈ X and
knowledge K. Predictive uncertainty is measured in the
observation space and therefore amounts for the uncertainty

−2 −1 0 1 2
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x∗

−2.5

0.0

2.5

y
∗

Figure 5. Reduction in epistemic uncertainty across the entire input
range. K represents the exact values of parameters b or c (in this
case b = 2.5 and c = −0.5). Revealing the value of the parameter
c, is equivalent to proving the information about the value that f
takes at the origin. This is represented by a spike in the uncertainty
reduction at x∗ = 0. In contrast, revealing the value of b provides
information about global characteristics of f , rather than local; no
significant spikes in uncertainty reduction are observed.

associated with observational noise. However, we can de-
compose it as a sum:

I(y∗, f | x∗,K)︸ ︷︷ ︸
epistemic

+Ef∼p(f |K)[H[y∗ | x∗, f ]]︸ ︷︷ ︸
aleatoric

and approximate the predictive and aleatoric uncertainties
with MC samples. The epistemic uncertainty is then ob-
tained as the difference of the two quantities (see appx. A.5
for more details). With the same setup as in section 4.1.1,
we look at the reduction in epistemic uncertainty given a
knowledge, i.e. I(y∗, f | x∗) − I(y∗, f | x∗,K). We com-
pute this metric for all values x∗ ∈ [−2, 2]. By averaging
over the entire input range we obtain a single-valued metric
of the impact of K on the uncertainty about f . Figures 5
and 6 summarize our observations.

Take-away: This example captures how different in-
formation represented by K can impact the inductive
biases of a model. By introducing knowledge, the
distribution of a priori likely functions concentrates
(c.f. Figure 1(c)), leading to reduction in model un-
certainty. The method of INPs enables us to quantify
the magnitude of this effect.

4.2. Part II: Real data and loosely formatted knowledge

For illustrative purposes, representations of knowledge in
the previous part were highly structured and with a well-
defined relationship to the underlying DGP. Nautraly, in
such scenarios we would resolve to direct knowledge inte-
gration methods (e.g. Bayesian linear regression). How-
ever, the advantages of informed meta-learning become
evident when: a) the functions to be learned lack a known,
closed-form expression; b) knowledge about the learning

6



Informed meta-learning

{a} {b} {c} {a,b} {b,c} {a,c}
Format of K
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Figure 6. Reduction in epistemic uncertainty averaged across the
input range. Knowledge that represents two values of the parame-
ters, results in a greater reduction in uncertainty than knowledge
about just a single parameter. Due to the strong, local effect of
c in determining the value of f at the origin, knowledge formats
including c have a larger impact on uncertainty reduction.

task is loosely formatted, making manual integration of prior
knowledge a significant challenge.

4.2.1. INFORMED WEATHER PREDICTIONS

Setup: We use the sub-hourly temperature dataset
from the U.S. Climate Reference Network, represent-
ing values of the air temperature measured at regular
5-minute intervals. For each task, target observations
are uniformly sampled from a 24h time range. Con-
text data points are selected by sub-sampling at most
10, chronologically first samples. This setup enables
us to assess extrapolation. We perform independent
experiments with two formats of knowledge :

A: For each task, knowledge K is a vector encod-
ing two values: the minimum temperature and the
maximum temperature on the day.

B: For each task, knowledge K is a synthetically
generated “weather forecast” presented in natural lan-
guage. We generate these with GPT-4 (OpenAI et al.,
2023) prompted to write two sentences mimicking a
weather forecast, based on values from the ground
truth temperature measurements.

Table 2. Relative performance gap (%) between informed and un-
informed predictions. Numbers in brackets represent the standard
errors of the estimates based on 110 testing tasks.

n = 0 n = 1 n = 3 n = 5 n = 10 ∆ AUC

A 57.7 (1.4) 21.2 (1.0) 18.8 (1.0) 15.0 (0.8) 2.9 (0.4) 23.0 (0.8)
B 48.1 (2.1) 15.6 (1.2) 14.8 (1.0) 11.1 (0.8) 2.1 (0.4) 17.0 (0.7)

Fig. 7 shows representative examples of the daily tempera-
ture paths from test tasks alongside purely data-driven and
informed predictions. NPs capture the general trend of the
temperature rising during the day, and then falling down
towards the night, but unsurprisingly, fail to accurately ex-
trapolate beyond the observed regions. This is due to a
high level of heterogeneity present in the collection of meta-

−10

0

NP INP (A) INP (B)

−5

0

5

10

2400 0600 1200 1800 2400

−20

−10

2400 0600 1200 1800 2400 2400 0600 1200 1800 2400

Te
m

pe
ra

tu
re

[◦
C

]

Time of day

Figure 7. Sampled evolution paths of the temperature, given 3 con-
text measurements. NP: raw predictions of the plain, uninformed
neural process. INP (A): predictions with the informed neural pro-
cess, given oracle knowledge about the minimum and maximum
temperature on the day. INP (B): predictions with the informed
neural process, given oracle knowledge about the temperature,
presented in a text format (available in the Appendix A.2).

training tasks, which is reflected in the high variability of
the sampled functions outside of the observed data range. In
terms of the informed predictions, we observe that the infor-
mation contained in K enables guided extrapolation beyond
the observed range of values and reduces the variance of
the sampled functions. Table 2 compares the performance
gap between informed and uninformed predictions. Notably,
knowledge enables sensible, 0-shot predictions with an av-
erage improvement in log-likelihood of 57.7% and 48.1%
for setups A and B, respectively. We also note that the rep-
resentation of knowledge, as presented in setup A should,
in the theoretically optimal case, impose hard constraints on
the maximum and minimum values of the function’s range.
However, given that INP is only a neural approximation of
these constraints, the resulting curves may exceed the speci-
fied range as opposed to strictly adhering to it; as it could
be possible with a custom-designed model that explicitly
incorporates such constraints into its optimisation objective.

Take-away: In practical scenarios, predictive func-
tions are difficult to model with closed-form mathe-
matical expressions, making the process of external
knowledge integration a challenging task. The ben-
efit of neural, meta- approaches, is their functional
flexibility. In particular, NPs can learn non-trivial
‘kernels’ from the collection of training tasks directly.
INPs take this a step further, enabling the incorpora-
tion of non-trivially representable information about
the underlying function into the model.

7
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4.2.2. INFORMED IMAGE CLASSIFICATION

Setup: We apply INPs to few-shot classification on
the CUB-200-2011 dataset (Wah et al., 2011). We use
100 bird categories for training, 50 for validation, and
50 for testing and follow the standard N -way, k-shot
classification setup. We adjust the INP architecture
to suit the image classification task, employing CLIP
vision and text encoders (Fu et al., 2022) (details in
appx. A.2.3). We perform independent experiments
with three formats of knowledge:

A: Knowledge represents features of a given bird
class, e.g. wing span, feather color. Class-level at-
tributes are obtained by averaging the attribute vectors
associated with each image from the dataset. Class-
level attribute vectors are stacked together to obtain
N × 312 tensors.

B: Knowledge represents class-level textual descrip-
tions of the N classes obtained by averaging sentence
embedding of individual image captions belonging to
the given class. We use human-generated captions as
collected in (Reed et al., 2016) and embed them with
CLIP. Per-class averaged text embeddings are then
stacked to form a N × 512 tensor.

C: Here knowledge represents a set of N individual
descriptions of each class. We generate these with
GPT-4 based on the captions from B (see appx. A.2.3
for examples).

Table 3 shows results for 5-way and 10-way classification.
Across all settings, we observe higher classification accuracy
when additional knowledge is utilised. This trend holds
for 1, 3, 5, and 10-shot tasks, with the performance gap
widening as the number of shots decreases. The information
about characteristic elements of each class contained in K
proves sufficient for relatively good zero-shot prediction
performance. While the zero-shot performance for setup
C is lower than that of setups A or B, it is nevertheless
significantly higher than the accuracy of random guessing.

Take-away: INPs align the representations of im-
ages and knowledge about class-specific features to
construct latent representations that contain the essen-
tial multi-modal information. This alignment facili-
tates robust generalisation to new, previously unseen
classes, enabling both zero-shot classification and
improved few-shot classification accuracy.

Table 3. Accuracy (%) on N -way, k-shot classification tasks for
the CUB-200-2011 dataset. Numbers in brackets represent the
standard errors of the estimates based on 60 tasks per each setting.
Individual tasks are constructed with only previously unseen bird
categories.

N k NP INP (A) INP (B) INP (C)

5

0 – 87.5 (0.7) 87.4 (0.5) 50.3 (0.6)
1 82.2 (0.6) 88.1 (0.6) 89.1 (0.5) 85.1 (0.5)
3 87.0 (0.5) 88.4 (0.6) 89.3 (0.5) 88.3 (0.5)
5 88.1 (0.5) 88.5 (0.6) 89.6 (0.5) 88.9 (0.4)

10 88.5 (0.5) 88.5 (0.6) 89.6 (0.5) 89.0 (0.4)

10

0 – 81.1 (0.4) 78.5 (0.4) 33.7 (0.3)
1 73.3 (0.4) 82.2 (0.4) 81.9 (0.4) 77.0 (0.5)
3 79.8 (0.4) 82.7 (0.4) 82.7 (0.4) 81.8 (0.4)
5 81.5 (0.4) 82.8 (0.4) 82.8 (0.4) 83.0 (0.4)

10 82.6 (0.4) 82.7 (0.4) 83.0 (0.4) 84.1 (0.4)

5. Discussion
Limitations. Our work primarily focuses on key princi-
ples of informed meta-learning; the introduced class of INP
models serves as a foundational proof of concept within
this paradigm. As discussed by the previous works on NPs
(Garnelo et al., 2018a;b; Kim et al., 2019) these models
tend to underfit observed data and may not easily scale to
high dimensional problems. We also note that good perfor-
mance of INPs relies on the model accurately interpreting
the true meaning of knowledge. This is, however, contin-
gent on the number of available training tasks, lack of spuri-
ous correlations, and knowledge complexity (see Appendix
A.6.1-A.6.3). Future work should explore new informed
meta-learning architectures improving learning efficiency,
disentanglement of latent knowledge representations, and
generalisation.

Broader impact. In this paper, we have laid the groundwork
for a novel ML framework of inductive bias specification
based on expert knowledge expressible with varying degrees
of formalism. Importantly, this paradigm facilitates the in-
corporation of knowledge articulated in natural language—a
primary medium of communication between domain experts
and ML practitioners. While it is important to ensure that
the integrated information is accurate and free from harmful
or unfair biases, we believe that informed meta-learning,
supported by increasingly expressive language models, can
offer significant benefits in applications where knowledge
is conveyed verbally or in writing, such as in textbooks or
scientific articles. This paper presents work whose goal is
to advance the field of Machine Learning. There are many
potential societal consequences of our work, none which we
feel must be specifically highlighted here
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A. Appendix
A.1. Architectural and training details for INPs

A.1.1. MODEL ARCHITECTURE

The architecture of INPs consists of the following key components:
• A data encoder, h1 : X × Y → Rd that takes in pairs (xi, yi) and produces an order-invariant representation
r =

∑
i h1(xi, yi).

• A knowledge encoder, h2, a map from the knowledge representation space to the latent space Rd that takes in the
knowledge inputs K and extracts a latent knowledge vector k = h2(K).

• An aggregator, a, that combines the data representation, r, and the latent knowledge representation, k, into one
representation, r′ = a(r, k), that parameterizes the latent distribution q. We take q(z | r′) = N (z;µz, σz), where
(µz, σz) = r′.

• A conditional decoder, g, that takes in samples of the global latent variable z ∼ q(z | r′) and the new target location
x∗ to output the predictions parameterised by p(y∗ | x∗, z) = N (y;µy, σy), where (µy, σy) = r′

Figure A.1. Overview of the INP model architecture.

In all experiments any MLP is implemented with the GELU non-linearity (Hendrycks & Gimpel, 2016). We experiment
with different forms of aggregation, a:

1. sum & MLP: a(r, k) = MLP(r + k),

2. concat & MLP: a(r, k) = MLP([r||k]),
3. MLP & FiLM: a(r, k) = FiLM(k) [MLP(r)]. We use the idea of modulation parameters introduced by (Perez et al.,

2018). Here a is an MLP whose parameters are modulated with a modulated with the outputs of h2.
We find that in most cases, the first, least complex option performs the best.

A.1.2. TRAINING

INPs are trained in an episodic fashion over a distribution of learning tasks consisting of context and target datasets, and
associated knowledge representations. Denoting by rC and rT the context and target data representations and by k the
knowledge embedding vector of a single task, we derive the evidence lower bound via:

p(yT | xT , rC , k) =

∫
p(yT |xT , z)q(z | rC , k)dz (9)

=

∫
p(yT | xT , z)

q(z | rC , k)
q(z | rT , k)

q(z | rT , k)dz (10)

= Eq(z|rT ,k)

[
p(yT | xT , z)

q(z | rC , k)
q(z | rT , k)

]
(11)

And therefore, by Jensen we obtain:

log p(yT | xT , rC , k) ≥ Eq(z|rT ,k) [log p(yT | xT , z)]−DKL (q(z | rT , k) || q(z | rC , k)) (12)
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The parameters of the model are learned by maximising the ELBO in (12) for randomly sampled batches of tasks. During
training, we use one sample of q(z | rT , k) to form a MC estimate of the ELBO. For evaluation, we use 32 samples.
Additionally, during training, we randomly mask knowledge by setting k = 0, the frequency of masking is a hyperparameter
of the model.

A.2. Experimental details

Throughout all experiments we use the Adam optimizer (Kingma & Ba, 2015). During training, we use validation-based
early stopping. All experiments were run on a machine with an AMD Epyc Milan 7713 CPU, 120GB RAM, and using a
single NVIDIA A6000 Ada Generation GPU accelerator with 48GB VRAM.

A.2.1. 1-D SINUSOIDAL REGRESSION (SECTION 4.1)

For each task, context and target data points are sampled according to the following process. A function f is sampled from
the family of sinusoidal functions with trend and bias, f(x) = ax+sin(bx)+ c. We also introduce a Gaussian observational
noise, s.t. yi = f(xi) + ϵi, ϵi ∼ N (0, 0.2). The parameters a, b, c are randomly sampled according to: a ∼ U [−1, 1],
b ∼ U [0, 6], c ∼ U [−1, 1]. For each task, the context and target points are uniformly sampled from the range [−2, 2]. The
number of context points n ranges uniformly between 0 and 10; the number of targets, m = 100. We let K to encode the
value of two, one, or none (K = ∅) of the parameters a, b, or c.

The data encoder, h1, is implemented as a 3-layer MLP. The knowledge encoder, h2, is implemented with the DeepSet
architecture (Zaheer et al., 2017), made of two 2-layer MLPs. Each element of the set is represented by a one-hot encoding
of the parameter type with its value appended at the end. The decoder is a 4-layer MLP. We set the hidden dimension,
d = 128 and use the sum & MLP method for the aggregator, a. We use a learning rate of 1e-3 and set the batch size to 64.
During training, knowledge is masked at rate 0.3.

In section 4.1 we use this setup to demonstrate and discuss the impact of expert knowledge on enhanced data-efficiency,
reduction in uncertainty, and robustness to distribution shifts. Fig. A.2 shows sample predictions under 0, 1, or 3 observed
data points and different formats of knowledge K.

n
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Figure A.2. Sample predictions under varying formats of knowledge. Knowledge about the value of the slope or frequency of oscillations
provides global information about the overall shape of the function. Observing additional data points anchors the curves in the xy-
coordinate system. Based on a qualitative investigation we conclude that the INP successfully learned how to integrate prior knowledge
with observed data points.
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A.2.2. INFORMED WEATHER PREDICTIONS (SECTION 4.2.1)

We use the sub-hourly temperature dataset from the U.S. Climate Reference Network (USCRN)*. The data contains values
of the air temperature measured at regular 5-minute intervals. For each task, the context and target datasets consist of
measurements from one day. Training, validation, and testing collections of tasks are created by randomly selecting 507,
108, and 110 days, respectively, between the years 2021 and 2022 in Aleknagik, Alaska. For each task, the target dataset
consists of all 288 measurements in the 24h range. Context observations are sampled by first uniformly sampling 10 data
points and then selecting the chronologically first n observations where n ∼ U [0, 10]. We perform independent experiments
with two formats of knowledge:

A: For each task, knowledge K is a vector encoding two values: the minimum temperature and the maximum temperature
on the day. In this setup, the knowledge encoder, h2, is a simple 2-layer MLP .

B: For each task, knowledge K is a synthetically generated “weather forecast” presented in a natural language format. For
illustrative purposes, these weather descriptions were generated with GPT-4 (OpenAI et al., 2023). In total, 726 descriptions,
one per day were generated. The prompt used contains instructions to generate 2 sentences mimicking a weather forecast,
based on 48 values sampled at 30-minute intervals from the ground truth temperature values. We use the following prompt:

System: You are given a vector of values representing the temperature for the next
24h at 30-minute intervals, starting at 12 am. Your task is to present the weather
forecast according to these values. Keep it to max 2 sentences. Use descriptive
words to refer to the times of the day, e.g. morning, afternoon, evening.

User: <<Temperature values>>

In this setup, the knowledge encoder h2 is implemented with a RoBERTa language model (Liu et al., 2020) with all
weights frozen except for the layer norm weights, which are tuned during the end-to-end training. The latent knowledge
representation k is obtained as a pooled sentence embedding. Here, we use the last hidden state of the CLS token.

For both setups A and B, the data encoder h1 is implemented as a 3-layer MLP and the decoder g as a 4-layer MLP. We
used the MLP & FiLM aggregator a. We set the hidden dimension, d = 128. We use a learning rate of 1e-3 and set
the batch size to 64. The knowledge representation is randomly masked at a rate 0.3 by setting k = 0. Vanilla NPs are
known to underfit context observations and underestimate the variance, which became apparent with this more complex
and noisy dataset. To mitigate this issue, in this experiment, we have employed multi-head cross-attention during the
encoding of the data representation, r, as proposed by (Kim et al., 2019). Precisely, r =

∑n
i=1 Attih1(xi, yi), where

Att = MultiHead(Q,K, V ), with Q being a matrix of target inputs, K a matrix of context inputs and V a matrix consisting
of individual data representations ri = h1(xi, yi). We use 4 attention heads.

See the main body of the paper for a discussion of the results. Figure A.3, shows sample tasks and their corresponding
GPT-4 generated weather descriptions.

A.2.3. FEW-SHOT AND ZERO-SHOT IMAGE CLASSIFICATION WITH CUB-200-2011 (SECTION 4.2.2)

We apply our model to zero and few-shot classification using the CUB-200-2011 dataset (Wah et al., 2011). It contains
11,788 images of 200 subcategories belonging to birds. Following Akata et al. (2015), we use 100 bird categories for
training, 50 for validation, and 50 for testing. We generate the labels for N -way classification tasks by choosing N random
classes at each training step and arbitrarily assigning the labels 0, . . . , N − 1 to each. For each task, the number of shots k,
i.e. the number of example images per class ranges uniformly between 0 and 10. The target set consists of 20 images per
class. We perform independent experiments with three formats of knowledge:

A: Knowledge K represents attributes characteristic for a given class, e.g. wing span, feather color, shape of the beak. This
is obtained by a class-wide average of the binary attribute vectors from the original dataset associated with each image.
Knowledge representations, K, are constructed by stacking all N class attribute vectors into a N × 312 tensor. In this setup,
the knowledge encoder, h2, is a simple 2-layer MLP.

B: Knowledge K represents the average per class, natural language descriptions of the N classes. These are obtained by

*https://www.ncei.noaa.gov/access/crn/qcdatasets.html
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The night will start off cold with temperatures falling to -8.9°C 
by late morning, and then gradually rise to a high of 1.6°C in 
the late afternoon. Temperatures will start to drop again in the 
evening, reaching -3.1°C by midnight.

The night will start off chilly with temperatures around 0.5°C, 
but it will drop to -1.7°C by early morning. The day will 
gradually warm up, reaching a high of 5.1°C in the afternoon 
before cooling off to 1.0°C by midnight.

The night will be bitterly cold with temperatures around -18 
degrees, gradually increasing to -14 degrees by late afternoon. 
The temperature will slightly drop again to -15 degrees in the 
evening, warming up a bit to -14 degrees at midnight.
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The night will start off cold with temperatures falling to -16.8°C 
by dawn, and the day will continue to get colder, reaching a 
chilly -23.0°C by midnight. Afternoon temperatures will hover 
around -18.5°C, so bundle up if you're heading out.

Figure A.3. Extended Figure 7 with GPT-4 generated “weather forecasts” for setup B.

averaging sentence embedding of individual image captions belonging to the given class. We use human-generated captions
as collected in (Reed et al., 2016) and encode them using CLIP embeddings (Fu et al., 2022). Averaged per class text
embeddings are then stacked to form a N × dmodel, where dmodel = 512. In this setup, the knowledge encoder, h2 is a
2-layer MLP.

C: We use GPT-4 to generate individual descriptions of each class based on the human-generated image captions. We
present 5 randomly sampled image captions pertaining to one class and prompt GPT-4 to generate short descriptions of
features characteristic of the given bird breed.To generate the class descriptions, we use the following prompt format:

System: You are given 5 descriptions of a bird breed. Based on this information
generate one comprehensive description of the bird breed. Keep it short and
informative.

User: <<List of 5 randomly sampled image captions>>

In this setup, the knowledge encoder, h2 is the CLIP text encoder. The embeddings of class descriptions are obtained as the
average of all outputs from the last layer of CLIP. After stacking them together in a N × dmodel tensor, they are passed
through a linear projection layer.

For all setups, A, B, and C, the data encoder, h1 is implemented with a frozen CLIP vision model, followed by a linear
projection layer. Following the approach of Garnelo et al. (2018a), we only aggregate over inputs of the same class. The
aggregated class-specific representations are then concatenated to form the final representation of size N × d. We set
d = 512. We use the sum & 2-layer MLP aggregation a. We modify the decoder, g to return the logits of the categorical
distribution. For a N -way task with class labels c1, . . . , cN , we define p(y∗ | x∗, z) as:

p(y∗ = cj | x∗, z) =
exp(−wT

j x
∗)∑

j′ exp(−w′T
j x∗)

, [w1, . . . , wN ] = MLP(z), z ∈ RN×d,

where x∗ is a CLIP image embedding from the target set. In our experiments, we use the Hugging Face implementation of
the CLIP ViT-B/32 model (https://huggingface.co/openai/clip-vit-base-patch32). We use a learning rate or 1e-4, batch size
of 32 and knowledge is randomly masked at rate 0.5. For setups A and B, the INP model is trained end-to-end. For setups C,
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the weights of the INP model from the trained weights of the already trained, plain NP, and all model components, including
the CLIP text encoder, are fine-tuned. As opposed to setup B, in setup C fine-tuning of the CLIP text encoder was necessary
to ensure alignment between the class-wide descriptions and image representations. Empirically, the two-stage training
resulted in improved convergence.

For the empirical results and short discussion, refer to the main body of the paper. In Table A.1 we present sample
human-generated captions (used in setup B) and their corresponding GPT-generated class descriptions (used in setup C).
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Table A.1. Example images, image captions and GPT-generated class descriptions.

Sample Images Sample image captions GPT-generated class description

1. A large bird with a white belly, black
and white wings with a long beak.

2. This bird is white and grey in color with
a curved beak, and black eye rings.

3. A large bird with a white belly and face,
black back and wings, and peach bill.

4. Bird has gray body feathers, white
breast feather, and long beak

5. A medium sised bird with black wings,
and a bill that curves downwards

This bird breed is a medium to
large size, characterised by its
grey body feathers, contrasting
white belly and face, black back
and wings, distinctive black eye
rings, and a long, downward-
curving peach bill.

1. This big bird has a sharp beak and has
black covering its body.

2. An all black bird with a distinct thick,
rounded bill.

3. This entirely black bird has long and
wide rectrices relative to the size of its
body.

4. A black bird with a long tail and large
beak.

5. This black bird has sparse plumage and
a thick brown beak.

This bird breed is large and en-
tirely black with sparse plumage,
characterised by its thick brown
beak, long tail, and wide rectri-
ces relative to its body size.

1. This goofy looking bird sports webbed
feet and a bright orange bill, with pierc-
ing white eyes and a dull coat of gray.

2. A black bird with a small, orange beak
and a inverted feather curl at the base
of the beak.

3. A black body, white eye with stripe next
to it, and an orange bill are on this bird.

4. This black bird has a orange bill with
hair coming out of it, small pupils, and
a white line across its face.

5. This bird has wings that are black and
has an orange bill

This bird breed is characterised
by its black body, webbed feet,
a bright orange bill with an in-
verted feather curl at the base,
piercing white eyes with a dis-
tinctive stripe, and a dull grey
coat.

1. This is a black bird with a white spotted
belly and a white eye.

2. This bird is black with white and has a
very short beak.

3. This bird has wings that are black and
white and has a small bill

4. This small bird is white with black spots,
a white neck, and black around its eyes.

5. This is a short stocky bird with webbed
feet, it is mostly white with black wings
and black speckles throughout.

This bird breed features a black
body with a white and black
spotted underbelly, a white and
grey speckled chest, a black
crown, bright white eyes with
very small pupils, and a short,
pointed, black and orange bill.
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A.3. Extended Related Work

Conditional generative models. The goal of deep generative models (DGMs) is to learn a neural approximation of the
distribution of the data p(x) over a space X , most commonly the space of images. Popular DGMs include, VAEs (Kingma
& Welling, 2014), GANs (Goodfellow et al., 2014), and diffusion models (Ho et al., 2020; Song & Ermon, 2019). Their
conditional versions, e.g. CVAEs (Sohn et al., 2015), CGANs (Mirza & Osindero, 2014), and conditional diffusion models
(Ho & Salimans, 2022; Ramesh et al., 2022) model the conditional distribution p(x | c), where c is an additional conditioning
variable, e.g. a class label or a text sequence. A similar analogy can be drawn between NPs and INPs which, as meta-learners,
bring the idea of (conditional) generative modeling to the space of hypothesis f ∈ F . The goal of NPs is to model the prior
distribution over functions p(f); as well as the posterior predictive distribution p(f | DC). Similarly to CVAEs and CGANs,
INPs introduce an additional conditioning variable–the expert knowledge, and model the conditional distribution p(f | K),
guiding the prior over the space of functions, such that the informed predictions, dictated by p(f | DC ,K) are concentrated
around the region of functions agreeing with both the observed dataset DC and the expert knowledge K.

Multimodal deep learning. broadly refers to deep learning methods that can process and relate information from multiple
modalities simultaneously, such as image, audio, and text. Our framework assumes that the datasets D and knowledge
representations K may belong to two different data modalities (e.g. D contains input-output pairs for 1-D regression and K
contains a natural language description of the expected shape of the regression curve). This places informed meta-learning
in the area of multimodal methods. What makes it distinct is that standard multimodal strategies (e.g. Ngiam et al. (2011);
Srivastava & Salakhutdinov (2012); Ding & Tao (2015); Shi et al. (2021b;a)) consider finding a predictive function f , where
X is a multimodal input space X = X1 × . . .×XM , with each Xj , j ∈ [M ] corresponding to a different data modalitly. In
informed meta-learning, the learned functions f are typically unimodal, but the learning algorithm to fit each function is
conditioned on the knowledge representation K, belonging to a different modality.

Natural language priors. LLMs trained on vast text corpora can be seen as databases of knowledge about the world. Recent
studies of Choi et al. (2022) and Li et al. (2023) explore utilising LLMs as sources of prior knowledge in a non-meta setting.
With carefully designed prompts, a LLM outputs a prior distribution over the space of outcomes, which, when combined
with downstream ML models, leads to ”informed” predictions. This strategy has been shown to be successful in many tasks
where semantic meta-data is available, including feature selection, reinforcement learning, causal discovery, and image
segmentation. However, using LLMs as a source of knowledge may raise ethical concerns, especially when querying a LLM
about sensitive attributes, potentially propagating harmful biases from their pre-training text corpora. In contrast to these
methods, our framework does not rely on a language model as a source of common-sense knowledge. Instead, LLMs are
merely used to generate sentence embeddings of the human expert’s knowledge presented in natural language.

Zero-shot and few-shot learning. As presented in the experimental section, informed meta-learning enables sensible
zero-shot predictions guided by expert knowledge. For instance, in multi-class image classification, K may contain a list of
characteristic attributes of each class or class-wide descriptions in natural language. Seemingly similar ideas of utilising
side information about each class for zero-shot learning have been explored in works of Al-Halah et al. (2016); Elhoseiny
et al. (2017); Paz-Argaman et al. (2020). In contrast to these methods, informed meta-learning does not focus on zero-shot
learning only, but on the process of integrating external knowledge (e.g. knowledge about what are the characteristic
features of each class) with observed few-shot or zero-shot (DC = ∅) data sample. In the image classification domain, the
idea of combining sample images with zero-shot attribute information was considered by Tsai & Salakhutdinov (2017)
in application to one-shot learning, and extended by Schönfeld et al. (2019) to few-shot learning. None of these works,
however, consider the meta-learning setup of N -way, k-shot classification and require that the class attribute information
is always present at training and test time, as it implicitly defines class labels. In our setup, the role of class information
contained in K lies in enhancing model performance by emphasising which visual features are most distinctive for a given
class, enabling zero-shot classification as a byproduct. Contrary to Schönfeld et al. (2019), the additional information
contained in K is not necessary for few-shot predictions on previously unseen classes.

Domain knowledge infusion for neural networks. Informed ML for deep learning aims to develop methods for explicit
knowledge integration into neural representations. This can be achieved by, for instance, designing specialised layers or
complete model architectures (Peng et al., 2019; Wu et al., 2018; Bogatskiy et al., 2020), introducing additional regularisation
terms (Karpatne et al., 2017; Xu et al., 2017), or equipping the model with the ability to query external information (Annervaz
et al., 2018; Xu et al., 2015). In contrast to informed meta-learning, these methods only tackle a single-dataset setting. In
informed meta-learning the external information is not queried per each input, but per each learning task and pertains to all
inputs and outputs within a task, often informing about global properties of the learned functions.
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Meta-learning for PINNs. The idea of combining meta-learning with informed machine learning methods has previously
been employed in PINNs. For instance, (Huang et al., 2022; Qian et al., 2021; Belbute-Peres et al., 2021) use meta-learning
to learn how to solve a differential equation given a specific parameterisation. In this context, the parameterisation of the
equation serves as the knowledge representation for a particular task. These approaches leverage meta-learning to solve
tasks represented as pairs (D,K) more efficiently than training independent models for each data-equation pair. Crucially,
however, it is possible, albeit less efficient, to train an independent PINN for each individual task. In our setup, incorporating
the information contained in K directly and explicitly into a learning algorithm is challenging. By employing meta-learning
across a distribution of tasks, an informed meta-learner learns how to incorporate this information as a prior distribution
over the space of possible solutions. This approach enables domain experts to inject their prior knowledge, represented for
example in natural language, into future tasks.

Meta-learning with meta-data. There exist works that apply meta-learning to hierarchical datasets with task data and
their corresponding metadata, such as feature names (Iwata & Kumagai, 2022), task-specific parameters (Kaddour et al.,
2020), or labels (Tseng et al., 2022). The metadata of each task is used, in addition to the empirical data, to quantify the
similarities between different tasks. While seemingly similar to our setup, motivation of these works is distinct from ours.
For instance, (Kaddour et al., 2020) extends ideas from active learning to meta-learning, where the algorithm can choose
which task to learn next by considering the metadata of candidate tasks and their similarity to previously solved tasks.
The method of (Iwata & Kumagai, 2022) uses feature descriptions, and (Tseng et al., 2022) uses multi-class agricultural
labels to infer similarities between different learning tasks, thereby improving generalization to new tasks. The underlying
assumptions of these methods are that datasets with similar metadata share similar relationships between the variables of the
data. We want to stress the difference between metadata and knowledge. Metadata need not contain explicit knowledge
about the underlying DGP of a task. For instance, the fact that a tabular dataset contains features named “age” and
“salary” does not express knowledge about how age relates to salary. This relationship would need to be discovered by
the meta-learning algorithm, and even if successfully learned, it would remain unknown to the human user due to the
black-box nature of modern meta-learning approaches. The key motivation of this paper is to enable human experts to
inject their prior knowledge about the functional relationships between the variables of a task via meaningful and intuitive
knowledge representations—specifically, sentences in natural language that explicitly articulate (partial) knowledge about
the underlying DGP of a task.
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A.4. Probabilistic perspective on informed meta-learning

Figure A.4. Machine learning practitioners map expert
knowledge K ∈ K to a prior probability over func-
tions f ∈ F . The regions of F assigned non-zero
probability defines the hypothesis space of a model.
Knowledge about different learning tasks is related to
distinct regions of F .

From knowledge to inductive biases. In conventional, single-task
learning settings, a machine learning practitioner, based on their own
understanding of the subject, or insights of a domain expert elicits
a ML model equipped with inductive biases tailored to the specific
task. This process can be seen as assigning a prior probability to the
space of all data generating processes, or alternatively the space of all
functions† mapping inputs to outputs, F . We will denote this prior
as p(f). The model’s support, or hypothesis space, is the subset of F
where the prior probability, p(f), is non-zero, F = {f ∈ F : p(f) >
0}. Inductive biases are then defined as the relative, prior probabilities
of possible solutions. Let f∗ denote the true state of nature according
to which our observed dataset D has been generated. The model is
well specified if f∗ is assigned a non-zero prior probability, i.e. it
belongs to the support of the model. If f∗ is within the support, the
model’s posterior p(f | D) will concentrate around f∗ as the model is
updated with an increasing number of observations. The effectiveness
of the inductive biases depends on how much mass is a priori assigned
to f∗ relative to all other solutions supported by the model, dictating
the convergence rate of p(f | D) to f∗. A perfect inductive bias is
one that completely solves the task, essentially represented by a delta
distribution centered at f∗.

What human machine learning researchers and engineers are skilled
at is 1) understanding the context of the given learning problem; 2)
translating this acquired knowledge to the function space F and
defining adequate inductive biases. If we denote the relevant knowledge for a specific machine learning problem as K, the
actions of a machine learning practitioner can be abstractly viewed as a mapping from K to the prior probability distribution
over F , represented as p(f). To emphasise the dependency on K, we shall write p(f | K), and the knowledge integration
process as a map K 7→ p(f | K). For instance, if based on their knowledge, a domain expert demands that the fitted
function should be linear (K1 = ”linear”), the machine learning practitioner, by choosing a linear regression model assigns
a non-zero probability to all linear functions and 0 otherwise. When faced with a different learning problem, and new
knowledge concerning it, e.g. K2 = ”non-linear”, a new model, perhaps a polynomial regression model or a neural network,
with different support and inductive biases will be defined through K2 7→ p(f | K2).

Knowledge and cross-task generalisation. Notably, humans have the powerful ability to generalise between different
learning tasks from various domains. This is possible as the information about the learning task that they are initially
presented with contains knowledge about the true DGP or functional properties that are independent of the task’s domain.
For example, the requirement for the function mapping inputs to outputs to be increasing is a universal property unaffected
by the specific learning problem. The same inductive biases can be applied whether modeling economic growth or the
dosage-response relationship in medicine. The word ”increasing” conveys semantically meaningful information for the
machine learning practitioner, expressing a functional property that is domain-agnostic. This transcendence of knowledge
combined with semantically meaningful representations is what allows human ML practitioners to generalise across different
learning tasks. An ML practitioner, having the ability to construct models conforming to several forms of knowledge, gained
from previously solved tasks, can easily construct ML models that are in line with knowledge pertaining to a new learning
task.

Yet, the process of manually defining inductive biases of a model is constrained by the machine learning engineers’ and
researchers’ abilities to construct models that adhere to different prior specifications. While properties like linearity or
translation invariance are relatively easy to encode by e.g. constraining the hypothesis space to linear models or modeling
the problem with a convolutional neural network, more fine-grained or less formally defined priors may appear challenging

†The two approaches of modeling the data distribution or learning a function from inputs x ∈ X to outputs in y ∈ Y can be seen
as equivalent if we assume that the observed dataset D = {(xi, yi)}ni=1 is generated according to yi = f∗(xi) + ϵi, where f∗ is a
realisation of a stochastic process indexed by X and each ϵi is an independent mean-zero random variable.
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or even impossible to encode manually, in which case they often need to be disregarded and models with weak-inductive
biases and large support are used instead, necessitating vast amounts of training data to correctly recover f∗.

Hypothesis space

(a) Concentrated meta distribution, provides strong in-
ductive biases, so long as the task of interest belongs
to the same environment as the tasks used during meta-
training.

Hypothesis space

(b) Heterogeneous environments span a wide range of
functions, and thus support a wider range of tasks, at
the cost of weaker inductive biases.

Figure A.5. Meta-learning under well-concentrated and
heterogeneous task distributions.

Meta-learning as inductive bias learning. To address this challenge,
meta-learning, viewed through the lens of inductive bias learning
(Baxter, 1997), suggests that the inductive bias can indeed be learned.
This presupposes the ability to sample from an environment of related
problems, which induces a prior probability over our hypothesis space;
the meta-learner estimates this prior as p(f). Consider f∗

1 as the
function defining the dataset for our task of interest. If f∗

1 is likely to
belong to the same environment as was observed during the estimation
of p(f), then p(f) will provide good inductive biases for solving this
task, as its mass will be concentrated near f∗

1 (see Figure 1(a)). If,
however, we are given a problem generated according to a different
process, f∗

2 , that is ”far away” from most of the problems observed
during meta-training, the meta-learned distribution, p(f), may offer
suboptimal inductive biases compared to assuming a non-informative
(e.g. uniform) prior over our hypothesis space, a phenomenon known
as negative transfer. To mitigate this issue, one may try to meta-learn
across more tasks that would cover a larger region of F . This however
would lead to p(f) that is heterogeneous and dispersed, resulting in

inductive biases that are not sufficiently strong for learning with just a small, few-shot data sample. Essentially, this presents
a trade-off akin to the classic bias-variance trade-off from a meta-perspective.

Informed meta learning as conditional inductive bias learning. This discussion brings us to conclude that neither the
conventional approaches nor automatic approaches of inductive bias specification are self-sufficient; yet, each approach
brings distinct advantages for enhancing data efficiency. Conventional methods rely on human ML practitioners to establish
the mapping K 7→ p(f | K). In meta-learning, prior knowledge about task relatedness is crucial to ensuring that the meta-
learned distribution, p(f), concentrates around the class of problems or a specific problem of interest. On the positive side,
conventional methods offer greater explainability, as the inductive biases of a model can be (at least partially) traced back to
the prior knowledge K, which is meaningful to humans. Whereas, meta-learning, provides greater functional flexibility,
enabling the model to learn non-trivial inductive biases, which otherwise may be impossible to explicitly hard-code into the
learning method.

Knowledge space

Hypothesis space

Figure A.6. Informed meta-learning allows to condition
the meta-distribution on the expert knowledge K, con-
centrating the meta-distribution around the regions of
our hypothesis space close to the true data generating
functions.

Given the above, it is reasonable to consider a method that could bring
together the two schools of thought. We want to retain the possibility
of learning fine-grained or less formally stringent inductive biases,
while at the same time being able to guide the learner to the space of
solutions that conform to our prior knowledge. To that end, informed
meta-learning proposes that the mapping K 7→ p(f | K) is meta-
learned by training over multiple tasks and their associated knowledge.
This process induces a possibly heterogeneous meta distribution p(f),
that is conditioned on the expert knowledge K, thus concentrating the
mass of p(f) around the region of the hypothesis that conforms to K
(see Figure A.6).

Knowledge vs. (meta-) data. One may argue, that this proposed
approach does not significantly differ from meta-learning with meta-

data or meta-features, where the meta-distribution could be conditioned on additional meta-data instead of K. While from
the learning method point of view, as presented in sections 3 and 4, this is to some extent true, the key difference lies in the
assumptions on the kind of information contained in K versus meta-data or meta-features.

First of all, while the meaning of knowledge is an ongoing debate in philosophy, here we take the scientific perspective and
assume that knowledge is a form of information that has already been validated, a justified true belief. This means, that the
relationships between knowledge and the underlying DGP of a given task should be a prior known to hold true. In practice
this means that if K is the knowledge about the task for which the true data generating distribution is defined through f∗,
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then p(f | K) should assign non-zero mass to a region around f∗. On the other hand, meta-data or meta-features are not
a priori known to contain relevant information for a learning task. The relationship between meta-data and the learning
task would need to be discovered by the learner during meta-training. Unlike knowledge, this relationship is unknown to
the human domain expert or ML practitioner and cannot be utilised for successful and explainable generalisation to new,
previously unobserved learning tasks. This means that knowledge, in contrast to meta-data or meta-features is verifiable. If
a human expert, knowing K, is presented with a hypothesis f ′, they can easily identify whether f ′ is consistent with K (in
which case p(f ′ | K) > 0) or not (p(f ′ | K) = 0). This is not necessarily true for meta-data or meta-features.

Furthermore, the knowledge space, K , is understandable for humans, while in contrast, the observation space is not,
and neither is the hypothesis space of a model, particularly in the context of deep learning. The meta-learned mapping
K 7→ p(f | K) can be seen as a new form of communication between humans and machines. For instance, suppose that
K is generated by a set of the two functional properties {”linear”, ”increasing”} that can be composed together through
negation and conjunction, e.g. ”Linear and not increasing”. The set of all possible knowledge representations in K
is then aligned with regions of F adhering to the meaning of each phrase. The set {”linear”, ”increasing”} creates an
“alphabet” that together with the operations of negation and conjunction create a “language”, that is human-readable. During
meta-training, the rules of this language should be learned and associated with the corresponding regions of the hypothesis
space of a model. This process ultimately establishes a communication channel between the human expert and a black-box
ML model, facilitating meaningful interaction and improved transparency.

Informed meta-learning: future perspectives. The INP method, as introduced in section 3 and the subsequent experiments
outlined in section 4, offers just a glimpse into the broader goals of informed meta-learning. Looking ahead, we envision
that the knowledge representation space, K , corresponds to the space of human natural language, and the existing semantic
relationships between different words as well as their surrounding context can be leveraged for more effective learning of the
map K → p(f | K), requiring only a modest amount of training tasks. As a simple example, suppose that during training,
the word ”increasing” was successfully mapped to all increasing functions supported by a black-box model of choice. At
test time, if the model is confronted with the word ”decreasing” (unseen during training), the informed meta-learner, by
exploiting the semantic relationship between the two words (”increasing” implying ”not decreasing”), should generalize,
consequently assigning a zero prior probability to all increasing functions.
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A.5. Uncertainty quantification in Informed Neural Processes

One particularly appealing property of Neural Process, which motivated their choice for the basis of our informed meta-
learner, is the ability to estimate probabilities over the space of solutions, instead of returning a single point estimate. This
allows us to measure the reduction in model uncertainty given prior expert knowledge and/or observed data. We are mostly
interested in measuring the epistemic, rather than aleatoric uncertainty.

Aleatoric uncertainty refers to the notion of randomness seen as the variability in the outcomes which is due to inherently
random, unpredictable effects. As opposed to this, epistemic uncertainty refers to uncertainty caused by the lack of
knowledge about the true relationship between model inputs and outputs. By observing data, or by inserting prior knowledge
into the model, the epistemic uncertainty is reduced.

A natural choice for measuring the epistemic uncertainty would be the (conditional) entropy. By comparing H[p(f)] with
H[p(f | K)] or H[p(f | DC)] we can measure the impact of prior expert knowledge or observed data on the reduction in the
epistemic uncertainty for a single learning task. However, in INPs, we only have access to samples from the variational
distribution and since the decoder is implemented as a neural network, evaluating the distribution over functions is not
possible directly. Instead, we need to resolve to measure the uncertainty in the observation space. Thus, we are interested in
computing

H[y∗ | x∗, I], I ∈ {K,DC ,K ∪DC ,∅} (13)

at a particular location x∗ ∈ X in our input space, which can be then, for instance, averaged across uniformly distributed
points in X . The quantity in (13) is known as the predictive uncertainty. To approximate (13) for an input x∗, we rely on
Monte-Carlo estimation by sampling S functions based on our variational decoder.

H[y∗ | x∗, I] = −
∫

p(y∗ | x∗, I) log p(y∗ | x∗, I)dy∗

= −
∫ (∫

p(y∗ | x∗, f)p(f | I)df
)
log

(∫
p(y∗ | x∗, f)p(f | I)df

)
dy∗

≈ −
∫ (

1

S

S∑
s=1

p(y∗ | x∗, f (s))

)
log

(
1

S

S∑
s=1

p(y∗ | x∗, f (s))

)
dy∗ (14)

For each sample f (s), p(y∗ | x∗, f (s)) has a closed-form expression, as in the case of regression it is modeled with a normal
distribution. Thus (14) can be computed by numerically approximating the integral in the last line. Note that, since predictive
uncertainty is measured in the observation space, it also encompasses the uncertainty associated with the observational noise.
Depeweg et al. (2018) suggest that (13) can be decomposed as:

H[y∗ | x∗, I] = I(y∗, f | x∗, I)︸ ︷︷ ︸
epistemic

+Ef∼p(f |I)[H[y∗ | x∗, f ]]︸ ︷︷ ︸
aleatoric

(15)

The second part, Ef∼p(f |I)[H[y∗ | x∗, f ]], is the average entropy when the predictive function is known, thus can be
interpreted as the aleatoric uncertainty. If we model p(y | x, f) with a normal distribution, H[y∗ | x∗, f ] has a closed-form
expression, 1

2 log(σ(x
∗)2πe), where σ2(x) is the variance at location x∗.

The first part, I(y∗, f | x∗, I), representing the information gain can be interpreted as the epistemic uncertainty of interest.
This quantity can be computed as the difference of H[y∗ | x∗, I] and Ef∼p(f |I)[H[y∗ | x∗, f ]], where both quantities are
easy to estimate, as discussed above.

A.6. Additional experiments

A.6.1. MODEL PERFORMANCE VS. NUMBER OF TRAINING TASKS

Setup: We follow the same setup as in the illustrative experiment from section 4.1.1. We create multiple training
collection of tasks with a varying number of total training tasks, N train ∈ {25, 50, 75, 100, 200, 1000}, with the
upper limit being the number of tasks used in the original experiment 4.1.1. For each training collection of tasks, we
train independent INP and NP models. The INP models receive information about two, one or none of the parameters
a, b or c via knowledge representations, K. All models are validated and tested on the same collection of validation /
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testing tasks.
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Figure A.7. Log likelihood of target data vs. number of context data points (higher is better). Comparison across varying number of all
training tasks, N train. Left - model performance on training tasks, Right - model performance on test tasks.

Figure A.7 shows the performance of all models on training (left) and testing (right) tasks. We observe that: 1) Both for
the NP and INP models as the number of training tasks decreases the performance gap between training and testing tasks
increases. However, we note that this performance gap is already at a (subjectively) reasonable level with only as few as
75 training tasks. 2) For all INP models trained with N train ≥ 50 tasks we also observe that the additional knowledge
presented for each task improves the performance over the plain, uninformed NP. However, when the number of training
tasks is too small, here N train = 25, we observe a “knowledge overfitting” effect. With insufficient number of training
tasks our model is unable to appropriately capture the relationship between knowledge and empirical data, and thus fails to
generalise to new, previously unseen tasks and their corresponding, also previously unseen, knowledge representations.

Take-away: We tested the robustness of the INP model to the reduction in the number of training tasks. We showed
that in the experimental setup of section 4.1.1, adding external knowledge continues to deliver noticeable performance
gains over the uninformed NP when dropping from 1000 to as few as 50 training tasks. We also noted that with too
few training tasks, the INP may fail to generalize. To prevent this effect from occurring in real-world deployment, we
advise testing the model on held-out validation tasks and comparing its performance against an uninformed baseline,
monitoring the knowledge overfitting effect.

A.6.2. MODEL PERFORMANCE AND KNOWLEDGE COMPLEXITY

Setup: To assess the impact of knowledge complexity on the efficacy of learning the relationship between knowledge
and the model hypothesis space, we again follow the same setup as in section 4.1.1. We create multiple training
collection of tasks with a varying number of total training tasks, N train ∈ {25, 50, 75, 100, 200, 1000}, with the
upper limit being the number of tasks used in the original experiment 4.1.1. All models are validated and tested on the
same collection of validation / testing tasks. For each setting of N train we train an uninformed NP and 3 independent
INP models with different knowledge representations used during training:

• Mabc is a model where for each task its corresponding knowledge encodes, at random, one of the three
parameters, a, b, or c;

• Mab is a model where for each task its corresponding knowledge encodes, at random, one of the two parameters:
a or b (the value of c is never revealed);

• Mb is a model where for each task its corresponding knowledge encodes the value of a (the values of parameters
a and c are never revealed).

Knowledge representations are constructed by one-hot encoding the type of the revealed parameter with its value
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appended at the end. We note that for the INP models Mb, Mab, Mabc, the complexity of knowledge representations
gradually increases; the knowledge space is 1, 2 and 3 dimensional, respectively. We hypothesise that as the complexity
of the knowledge space grows, more training tasks are needed to effectively learn the mapping from knowledge
representations to prior distributions over functions. Given the same number of training tasks, the INP model Mab

needs to learn how to disentangle the information about the function’s oscillations (parameter b) from the information
about the function’s slope (parameter a). Model Mabc additionally needs to discover the meaning of knowledge
about the intercept (parameter c). Therefore, we expect that, given the same number of context points and the same
information contained in K, the relative performance gains of the INP models Mb, Mab, Mabc over the uniformed
NP model should decrease as the complexity of knowledge space increases.
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Figure A.8. LL of target data vs. number of context data points (higher is better). Comparison across a varying number of tasks used for
training N train. Complexity of knowledge space grows from left to right. All INP models are presented with the same knowledge about
each task–the value of the parameter b.

Figure A.8 shows the log-likelihood of the target data evaluted on 500 testing tasks. For every INP model at test time we
reveal the same information via knowledge representations—the value of the parameter b. Firstly, we observe the same
two effects as in experiment A.6.1. With more training tasks, model performance improves. 2) An insufficient number
of training tasks may lead to the “knowledge overfitting” effect; here at N train = 25 the INP performs worse than the
NP. Secondly, we look at the performance gap between the INP and the NP (the gap between solid and dashed lines). We
observe that as the complexity of the knowledge space grows (left to right) the performance gap between the INP and the
NP decreases. This is summarised through the ∆AUC metric, presented in the Table A.2. From Figure A.8 we can also
conclude that the more complex the the knowledge space is the more training tasks are needed to effectively train an INP
model. For instance, performance of the INP model Mb trained with N train = 75 tasks is comparable to the performance
of the INP Mabc trained wtih N train = 100 tasks.

Table A.2. Average relative performance improvement (%) between informed and uninformed predictions. The performance gains become
smaller as the complexity of the knowledge space grows (top to bottom). N train is the number of training tasks used. INP performs
better than the NP for all settings of N train ≥ 50 indicating effective transfer between knowledge representations and functional priors.
INP overfits with not enough training tasks, here at N train = 25.

N train 1000 500 200 100 75 50 25
model

Mb 81.74 83.51 64.52 79.1 44.78 39.71 -8.52
Mab 65.3 67.45 43.46 54.66 22.41 6.67 -18.67
Mabc 71.76 57.51 2.02 26.46 9.48 8.05 -5.6

Take-away: The above experiment confirms our hypothesis about the complexity of the information conveyed in
knowledge representations and the hardness of learning the mapping between knowledge representations and the
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model hypothesis space. As the complexity of knowledge increases, more training tasks are needed to effectively
learn the relationship between knowledge representations and the functional priors.

A.6.3. CORRELATION IN TRAINING DATA AND KNOWLEDGE DISENTANGLEMENT

Setup: For each task, context and target data points are sampled according to a similar process as in the experiments
from section 4.1. A function f is sampled from the family of sinusoidal functions with a linear trend, f(x) =
ax+ sin(bx). As previously, we also introduce a Gaussian observational noise, s.t. yi = f(xi) + ϵi, ϵi ∼ N (0, 0.2).
In this experiment. we simulate a scenario in which the training data exhibits a potentially spurious correlation. We
sample the parameters a and b from a multivariate Guassian,[

a
b

]
∼ N

([
0
3

]
,

[
1 σ
σ 2

])
We create 6 training and validation collection of tasks, one for each value of the covariance between a and b,
σ ∈ {0.0, 0.3, 0.6, 0.9, 1.2, 1.4}. We then train 6 independent INP and NP models. For the INP models we let K
encode the value of one of the two parameters a or b. The number of context points n ranges uniformly between 0 and
10; the number of targets is set to m = 100. The testing collection of tasks is created by sampling functions where a
and b are independent (i.e. σ = 0.0). This setup aims to test the robustness of the INP model to spurious correlations
in the training data. We want to investigate whether the INP model is able disentangle the meanings of parameters a
and b.

Table A.3. Average log-likelihood on test tasks vs. correlation in training data (higher is better). ρ - the correlation coefficient between
random parameters a and b. n - number of context data points per task. Model results for which the log likelihood is higher by a
statistically significant margin highlighted in bold. Values in brackets stand standard errors estimated with bootstrap.

ρ 0.00 0.21 0.42

model INP NP INP NP INP NP

n = 0 -139.1 (10.2) -209.2 (8.3) -174.4 (13.7) -196.5 (7.7) -266.1 (19.6) -221.7 (9.2)
n = 1 -99.0 (10.6) -102.1 (6.5) -73.1 (6.2) -120.4 (5.4) -95.0 (9.4) -108.6 (4.4)
n = 4 -16.9 (1.7) -30.9 (2.6) -34.8 (3.9) -41.0 (3.4) -29.2 (3.8) -38.2 (3.4)
n = 5 -12.1 (2.0) -11.9 (2.0) -15.7 (1.8) -17.8 (2.6) -12.4 (2.5) -21.7 (2.9)

n = 10 1.3 (1.1) 1.8 (1.4) -0.5 (1.2) 2.1 (0.9) 0.2 (0.9) -4.5 (2.0)
n = 15 3.5 (0.7) 5.4 (1.4) 0.8 (0.8) 2.6 (1.6) 3.1 (0.6) -2.2 (2.1)

ρ 0.64 0.85 0.99

model INP NP INP NP INP NP

n = 0 -356.4 (22.2) -214.0 (9.2) -795.6 (38.9) -321.8 (14.8) -1367.3 (63.6) -410.7 (15.2)
n = 1 -108.1 (7.1) -160.3 (7.4) -234.4 (9.3) -200.0 (9.9) -830.9 (40.9) -527.3 (19.2)
n = 3 -26.2 (2.2) -64.6 (4.4) -149.0 (6.6) -118.6 (6.3) -551.5 (32.5) -360.1 (10.6)
n = 5 -18.3 (2.0) -30.3 (3.0) -101.4 (4.9) -94.0 (5.1) -404.2 (13.2) -319.9 (9.0)

n = 10 -6.2 (1.2) -18.2 (2.6) -81.2 (4.4) -70.6 (4.5) -342.7 (11.1) -324.9 (9.3)
n = 15 -4.3 (1.2) -11.6 (2.3) -74.1 (4.3) -66.2 (4.3) -332.2 (11.1) -313.0 (8.9)

Results presented in table A.3 show that when the correlation between the parameter a and b increases, the test-time
performance of both the INP and NP models downgrades. This is due to the train-test distribution shift. Moreover, when the
correlation is moderate (ρ ≤ 0.64), the INP model outperforms or mathces the performance of the NP. We note, however,
that for ρ >= 0.42, the zero-shot predictions (n = 0) are better for the uninformed model than the INP. This is also true
for all values of n at higher correlation levels (ρ ≥ 0.85). We hypothesise that this is because the INP has overfitted to
the correlation between the parameters a and b. In the training dataset, revealing the information about the value of one
parameter gives information about the value of the other, unrevealed parameter. INP exploits this dependency.
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Take-away: INPs learn the meaning of knowledge based on its relationship with the empirical data. If this relationship
changes at test time, good performance of the INP can no longer be guaranteed. This characteristic may be especially
dangerous when there are spurious correlations in the dataset. The INP is prone to overfitting to these correlations,
“misunderstaning” the true meaning of knowledge, and thus failing to generalize to new knowledge representations
and their corresponding tasks, where the spurious correlations are no longer present.
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