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ABSTRACT

Despite the prevalence of tabular datasets, few-shot learning remains under-explored within this
domain. Existing few-shot methods are not directly applicable to tabular datasets due to varying
column relationships, meanings, and permutational invariance. To address these challenges, we
propose FLAT—a novel approach to tabular few-shot learning, encompassing knowledge sharing
between datasets with heterogeneous feature spaces. Utilizing an encoder inspired by Dataset2Vec,
FLAT learns low-dimensional embeddings of datasets and their individual columns, which facilitate
knowledge transfer and generalization to previously unseen datasets. A decoder network parametrizes
the predictive target network, implemented as a Graph Attention Network, to accommodate the
heterogeneous nature of tabular datasets. Experiments on a diverse collection of 118 UCI datasets
demonstrate FLAT’s successful generalization to new tabular datasets and a considerable improvement
over the baselines.

1 Introduction

Few-shot learning is a machine learning paradigm in which models are trained to make accurate predictions with
only a few labeled examples, often leveraging prior knowledge obtained from training on a collection of related tasks
[1, 2]. While few-shot learning techniques have been extensively studied in computer vision (CV) and natural language
processing (NLP) [3, 4, 5], tabular data has received little attention, despite its importance in many practical applications,
including finance [6], healthcare [7], and social sciences [8]. However, such applications often suffer from limited
labeled data due to its rarity or high labeling costs. For example, in finance [9], determining credit risk requires
considerable effort in data labeling, and in healthcare [10], rare diseases may not have enough samples to train a robust
model from scratch.

Few-shot learning on tabular data has been explored on a very limited scale—mostly assuming that the training and
target datasets share the same feature space [11, 12]. Generalizing tabular few-shot learning across heterogeneous
tabular datasets poses unique challenges. Firstly, columns of such datasets have no intrinsic meaning transferable
between different datasets; they are assigned meaning strictly in the context of their relationships to other columns
within the same dataset. This is in contrast to natural language data, where each word always corresponds to a fixed
set of meanings. Secondly, tabular datasets exhibit varying column-label relationships; tabular datasets can follow
different distributions and there is no obvious way in which different datasets can relate to each other. Finally, tabular
data exhibits permutational invariance with respect to the column order, unlike image and text data, where meaning
depends on the order of words or pixels. For these reasons, existing methods developed for CV and NLP cannot be
directly applied to tabular datasets.

To address these challenges, we propose FLAT—tabular Few-shot Learning with graph ATtention networks. FLAT
is formulated within the meta-learning paradigm of Vinyals et al. [13]. FLAT consists of a meta network, which
given a small few-shot sample, generates weights for the target network. The meta network employs an encoder-
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decoder architecture. The encoder, inspired by Dataset2Vec [14], embeds datasets and their individual columns into
low-dimensional shared subspaces and the decoder generates the weights for the target network. The target network, a
Graph Attention Network (GAT) [15], operates with these embeddings to perform inference on unlabeled instances.
This solves the challenges outlined in the paragraph above: a) the dataset encoder and the target GAT network make
FLAT permutation-invariant; b) the column embeddings combined with GAT enable dynamic assignment of meaning
and relations to features; c) the shared embedding space of datasets facilitates meta-learning across datasets. We verify
the effectiveness of FLAT on 118 classification datasets from the UCI repository [16] and show that FLAT considerably
outperforms existing methods, including tasks with highly imbalanced classes in the target variable.

Contributions 1) We introduce column embeddings and permutation invariant dataset embeddings to facilitate
knowledge transfer within shared low-dimensional subspaces across datasets with varying sets of features. 2) We
design meta and target networks suited for heterogeneous tabular datasets to exploit inter-column relationships and
identify structural similarities between training and test datasets, thereby enabling tabular few-shot generalization.
3) We compose these elements into a novel few-shot learning method that generalizes over tabular datasets with varying
sets of columns, as demonstrated by the experimental evaluation.

2 Related work

Meta- and few-shot learning Few-shot learning aims to train models capable of adapting to new tasks with minimal
labeled examples. This can be achieved through meta-learning on a variety of related tasks to obtain prior knowledge
that can be leveraged to solve new tasks [2, 17]. Notable approaches to few-shot meta-learning include learning a
distance metric [13, 18], parameter initializations [19, 20], parameter generators [21, 22], or learning the learning
algorithms [23]. Our few-shot meta-learning model is inspired by LGM-Net [21], which generates task embeddings
from a sample of data, and conditioned on these embeddings, samples weights for the target matching network [13] that
solves the target task. Through dynamic weight generation, the model adjusts its behavior to best suit the input task.
While we keep the base idea, we adapt it to tabular data.

Attention based models for tabular data Recently, attention-based models have achieved state-of-the-art performance
in tabular deep learning. Among them, TabNet [24] and FT-Transformer [25] are two notable examples. By utilizing
sequential attention to select the most important features, TabNet improves interpretability and learning efficiency.
FT-Transformer [25] is an adaptation of the Transformer architecture [26] to the tabular domain and can be seen as
an evolution of TabTransformer [27]. The model transforms all features into tokens and runs a stack of transformer
layers over the tokens. Inspired by the success of attention-based architectures, we implement the target network as
a GAT [15]—a type of graph neural network [28] employing the attention mechanism to pass information between
the nodes of a graph leading to improved performance compared to simpler baselines like the Graph Convolutional
Network [29].
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Figure 1: Overview of the FLAT architecture, highlighting its three key components: (1—dataset encoder F with the
column encoder G, (2)—weight generating decoder network H and (3)—the target GAT network Φ. (1) and (2) together
form the meta network.

Tabular few-shot learning Most research on few-shot learning focuses on NLP and CV tasks. While a small subset of
approaches explicitly tackles tabular few-shot learning, many of them exhibit notable limitations:
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TabLLM [11] fine-tunes large language models (LLMs) on tabular datasets serialized into natural language. The LLM
uses its semantic knowledge to improve classification accuracy. TabLLM requires access to meaningful names of the
predictors, which may not be available (e.g. when working with anonymized datasets). Moreover, black-box LLMs
suffer from limited interpretability and are susceptible to undesirable biases [30].

STUNT [12] meta-learns generalizable knowledge from few-shot tasks, self-generated from an unlabeled set of
examples. To generate the meta-tasks, STUNT requires an additional unlabeled training dataset of a considerable size
that shares the same feature space as the test dataset. Yet, such data may be unavailable or difficult to obtain.

Iwata and Kumagai [31] propose a heterogeneous meta-learning method based on Deep Sets [32] operators. Their
method learns separate latent representations of each attribute and response column, which together with the unlabeled
features are passed as inputs to the predictive network. This simple architecture has proven successful on regression
tasks, yet their evaluation on classification tasks is limited to small artificial binary classification tasks. Moreover, while
Deep Sets are easy to implement, processing each column of a dataset individually can hinder relational reasoning and
feature interactions [33], thus limiting the performance gains.

TabPFN [34] is a transformer-based prior-data fitted network that approximates Bayesian inference by training on
synthetic data generated from prior distributions mimicking real-world data generation mechanisms. TabPFN is
designed to make fast and accurate predictions on a single “small” dataset. However, it is not intended for transferring
knowledge between existing real-world datasets and a downstream dataset containing just a few labeled samples.
Moreover, its input size is limited to its training size (≤ 1000 labeled samples, ≤ 100 features, ≤ 10 classes).

In contrast to previous works, FLAT does not require semantically meaningful column names or a large number of
unlabeled samples. FLAT successfully captures structural relationships between the features and transfers knowledge
between real-world datasets of varying feature spaces, outperforming all existing baselines on few-shot classification
tasks. In addition, FLAT offers a higher degree of interpretability through the visualization of attention weights and
dataset embeddings.

3 FLAT: Tabular Few-Shot Learning with Graph Attention Networks

In this section, we clearly define the problem FLAT aims to solve, followed by a description of the model architecture
and the training procedure. The model overview of FLAT is presented in detail in Fig 1.

3.1 Problem definition

A task T is defined by a small meta dataset Dmeta = {(xmeta
i , ymeta

i )}Nmeta

i=1 and a target dataset Dtarget =

{(xtarget
i , ytargeti )}Ntarget

i=1 , where xmeta
i ,xtarget

i ∈ RNcol

are feature vectors of size N col, ymeta
i , ytargeti ∈ Y are the

corresponding labels, and Nmeta and N target are the number of samples in the meta and target datasets respectively.
The number of columns N col in each task can vary between the tasks. We assume that for a single task T , Dmeta and
Dtarget follow the same data distribution. During testing, Dmeta is labeled while only the features of Dtarget, i.e.
xtarget, are known. Our goal is to train a model M to predict unknown labels ytarget using Dmeta and xtarget. M
should generalize well to unseen tasks generated from different data distributions. In this paper, we mainly focus on
binary classification tasks, where Y = {0, 1}. We also demonstrate FLAT’s performance on 3-class classification tasks.

3.2 FLAT

Model structure Our model can be decomposed into three main parts: (1)—the permutation-invariant encoders, F and
G, which produce dataset embeddings e and column embeddings pj , (2)—the decoder H, which generates the weights
W based on the dataset embedding, and (3)—the target network Φ, a fully connected GAT. The first two elements form
the meta network, which parametrizes the target network.

The encoder maps a dataset into a shared embedding space of all datasets, e ∈ Rde . The embeddings capture important
dataset characteristics, such that similar datasets are close to one another in the embedding space. Similarly, individual
columns are mapped into a column embedding space, pj ∈ Rdc for j ∈

[
N col

]
. de and dc are the dimensions of the

dataset and column embeddings, respectively. The target network is conditioned on these embeddings, enabling it to
adjust its behavior to a particular dataset. By mapping all datasets into a fixed-dimension latent space, our model can
process and relate together different tabular datasets, even with non-overlapping sets of features.

Model training and testing We let Dtrain and Dtest denote collections of datasets used for training and testing,
respectively. In each training iteration, we first sample a dataset from Dtrain and extract from it a small subsample
forming the meta-task T = (Dmeta, Dtarget). The meta network encodes Dmeta and generates target network
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parameters. The target network performs inference on the features of Dtarget and generates predictions ŷtarget. During
training, a binary cross-entropy loss is computed between the predictions ŷtarget and the ground truth labels ytarget.
Weights are then updated with backpropagation. Once trained, FLAT performs inference on tasks generated from
unseen datasets from Dtest, following the same procedure as during training.

3.2.1 The meta network

At the core of our meta network lies the dataset encoder F , which extracts important characteristics of a dataset for
downstream classification. F takes in a tabular dataset of any size and outputs a permutation invariant embedding
vector of fixed dimension. We base F on Dataset2Vec [14]. Our variant is defined as:

e = f3

 1

Ncol

Ncol∑
j=1

f2

 1

Nmeta

Nmeta∑
i=1

f1(x
meta
i,j , ymeta

i )

 , (1)

where f1, f2 and f3 are MLP blocks, and N col is the number of columns. The inner sum spans rows, and the outer sum
spans feature columns, ensuring F is permutation-invariant across rows and columns. Unlike the original Dataset2Vec’s
contrastive loss, we directly train F as part of the end-to-end training scheme with no explicit constraints on e.

The column encoder G generates column embeddings pj as in equaion (2). It applies an MLP g to the first stage of F
after summing over rows, capturing the relation between a single column and labels.

pj = g

 1

Nmeta

Nmeta∑
i=1

f1(x
meta
i,j , ymeta

i )

 (2)

The weight decoder H is a set of L MLPs {h1 . . . , hL} where L is the number of layers in the target network. For
l = 1 . . . , L− 1, hl generates GAT weights from a dataset embedding e :[

ωl
a, ω

l
b, ω

l
W

]
= hl(e), (3)

al = θa
ωl
a

∥ωl
a∥

, bl = θb
ωl
b

∥ωl
b∥

, Wl = θw
ωl
W

∥ωl
W ∥

, (4)

where al and bl are vectors of attention weights and biases and Wl is the matrix of feature transformation weights. For
l = L, corresponding to the final linear classifier, only WL is generated. Like LGM-Net, we apply L2-normalization to
the generated weights [35], yet we let θ be learnable and do not use weight sampling or reparameterization.

3.2.2 The target network

We opt for a GAT as the target network, Φ (presented without bias terms bl for brevity). Φ consists of several GAT
layers, followed by a linear classification layer. The attention coefficients αjk and the hidden states of the next GAT
layer hl+1

j are computed as:

αjk =
exp

(
LReLU

(
al

⊤
[Wlhl

j ∥Wlhl
k]
))

∑
r∈Nj

exp
(

LReLU
(
al

⊤
[Wlhl

j ∥Wlhl
r]
)) , (5)

hl+1
j =

∑
k∈Nj

αjkW
lhl

k, (6)

where hl
j is the embedding of node j computed by layer l, Nj are neighboring nodes of j including itself, Wl and

al are parameters provided by the weight generating network, LReLU is the Leaky ReLU activation, and ∥ denotes
concatenation. The first layer node vectors h0

j = [pj ||xj ], j ∈
[
N col

]
, are concatenations of column embeddings and

its feature value. Each GAT layer operates on a fully connected graph where every node corresponds to one feature.
The attention coefficients and hidden states of the GAT are computed independently for each row i ∈ [N target] of the
target dataset Dtarget, while the parameters al,bl,Wl are shared across all rows.

To obtain predictions, the final GAT hidden layer node representations hL−1
j are averaged and passed to a linear

classifier with 2 output heads

p(ŷtarget) = softmax

(
WL

(
1

Ncol

∑
j

hL−1
j

))
. (7)
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GATs are a suitable architecture since they can process graphs of any size, corresponding to datasets with any number
of features. GATs use the same weights for each node, and our graph is fully connected, meaning that Φ is fully
permutation invariant while using fewer parameters than an equivalent-size transformer. However, the target network
must be invariant to column order while identifying which columns in Dmeta correspond to Dtarget. Concatenating
column embeddings to feature values allows the network to identify and interpret different features in different ways.
Furthermore, when combined with the fully connected attention mechanism, column embeddings allow the GAT to
consider interactions between features.

3.2.3 FLATadapt

As shown by the experimental evaluation in section 4, FLAT is able to bring competitive performance against the
baselines. We also present a further extension—FLATadapt. FLATadapt takes a pre-trained FLAT model and adapts the
dataset embeddings e, and column embeddings, pj with a few steps of gradient descent on the features and labels of
Dmeta, but only at inference time. All model weights remain unchanged. This method only changes how to perform
inference on an already-trained FLAT model, avoiding additional complexity during training (see Appendix A.1 for
implementation details). In section 4.2, we demonstrate that the extra adaptation step can increase performance at the
cost of longer inference time.

4 Experimental evaluation

In this section, we validate the effectiveness of our method in few-shot tabular learning using a collection of 118 tabular
classification datasets from the UCI Machine Learning Repository [16].

Experimental setup First, to increase the number and variety of binary classification tasks, the dependent variables of
datasets with more than two prediction classes (65 of 118) were binarized by setting the most common class as positive
and all other classes as negative (one-vs-all). FLAT models are trained and tested using an N -fold evaluation procedure.
We split the collection of all datasets into N folds. Each fold is then used once as the testing collection Dtest, while
the remaining N − 1 folds form Dtrain. To generate a task during training or testing, a dataset is chosen uniformly at
random from the relevant collection (Dtrain or Dtest). Then, Nmeta +N target rows are sampled to form Dmeta and
Dtarget. Feature columns are standardized to mean 0 and variance 1. During training, as a form of data augmentation,
we randomly subsample varying numbers of feature columns for both Dmeta and Dtarget, allowing the model to be
exposed to a wider range and difficulty of tasks. FLAT results are averaged over multiple random seeds.

Imbalanced few-shot learning Our setup differs from the conventional K-shot learning, where meta datasets contain
an equal number of examples per class. Unless otherwise stated, we employ a randomized sampling procedure. The
number of positive examples in Dmeta and Dtarget are sampled from a binomial distribution with success probability
p = 0.5. For a fair comparison against fully supervised learning algorithms, we require that Dmeta contains at least
one example of each class (except when Nmeta = 1). This approach simulates a more realistic scenario in which task
datasets may often have imbalanced classes. For example, rare diseases may have a prevalence rate of only 0.1%. A
conventional 5-shot learning approach would require around 5,000 records in order to construct a meta dataset with 5
positive and 5 negative samples. The standard K-shot and binomial sampling approaches are compared in Appendix
A.4.1.

Baselines We evaluate our approach against:

– standard supervised learning models: logistic regression (LR), k-nearest neighbors (KNN), support vector
classifier (SVC), random forest classifier (RForest), CatBoost [36],

– supervised deep-learning models for tabular data: TabNet [24], FT-Transformer (FTT) [25],
– semi-supervised meta-learning model for tabular data—STUNT [12],
– prior-data fitted supervised classifier for tabular data—TabPF [34],
– few-shot meta-learning model for tabular data of [31] (Iwata).

We do not compare against TabLLM since our setup does not assume access to semantically meaningful columns. Iwata
is meta-trained and tested using the same N -fold evaluation procedure as FLAT. All remaining baselines require a
training dataset with the same feature space as the test dataset. By our assumption, the only labeled samples with the
same feature space are those found in Dmeta. Therefore, all baselines (except Iwata) are fitted on Dmeta, and their
performance is evaluated on Dtarget independently for each task. For STUNT, we run the pre-training procedure on
{xmeta

i }Nmeta

i=1 and use {ymeta
i }Nmeta

i=1 as prototypes.

Validation As our setup does not assume access to labeled samples beyond Dmeta that could be used for hyperparameter
tuning, we use a validation procedure that identifies a global set of hyperparameters, leading to good generalization
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Table 1: Accuracy (%) of FLAT vs. the baselines averaged over all testing folds of the medical datasets. Nmeta labeled
meta examples are presented to each model at test time. The best model and those within its error range are highlighted
in bold.

Nmeta

model 1* 3 5 10 15

LR — 62.56 ± 0.28 64.47 ± 0.27 70.10 ± 0.26 72.69 ± 0.25
KNN — 64.99 ± 0.27 65.99 ± 0.27 69.50 ± 0.26 70.58 ± 0.25
SVC — 63.89 ± 0.27 65.62 ± 0.27 69.91 ± 0.26 71.87 ± 0.25

RForest — 59.83 ± 0.28 63.77 ± 0.28 70.11 ± 0.26 72.82 ± 0.25
CatBoost — 62.86 ± 0.28 64.90 ± 0.27 69.89 ± 0.26 72.44 ± 0.25

TabNet — 51.09 ± 0.29 53.10 ± 0.29 59.11 ± 0.29 61.75 ± 0.28
FTT — 63.73 ± 0.27 65.67 ± 0.27 69.67 ± 0.26 72.17 ± 0.25

STUNT — 63.79 ± 0.28 66.02 ± 0.27 70.96 ± 0.26 72.87 ± 0.25
TabPFN — 59.24 ± 0.28 62.51 ± 0.27 69.23 ± 0.25 72.00 ± 0.24

Iwata 57.72 ± 0.64 65.82 ± 0.60 67.81 ± 0.59 70.32 ± 0.57 71.49 ± 0.56
FLAT 59.73 ± 0.18 66.54 ± 0.11 68.85 ± 0.10 71.83 ± 0.09 73.10 ± 0.11
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Figure 2: Median model ranks based on accuracy over 29 medical datasets (Left) and all 118 UCI datasets (Right)

performance across multiple datasets instead of tuning them for each dataset separately. To achieve this, a collection of
validation tasks, Dval, is generated by randomly selecting 25% of all 118 UCI datasets and subsampling 25% of rows,
ensuring that there is no overlap between validation and testing rows. Hyperparameters for all models were selected by
maximizing the accuracy on tasks sampled from Dval and are fixed throughout all testing runs.

Full details of training and hyperparameter tuning for all models are given in Appendix A.1 and A.2.

n = 10 n = 25 n = 50 n = 100

Figure 3: t-SNE plot of the medical datasets embeddings e. Plots generated for increasing number of meta samples
Nmeta = min

(
n, 1

2N
row
D

)
for n ∈ [10, 25, 50, 100], where Nrow

D is the total number of rows of the dataset D. The
embeddings are generated for tasks coming from both Dtrain and Dtest. Increasing the number of meta rows reveals
the capability of FLAT to cluster together tasks coming from the same datasets.

4.1 Illustrative example: medical datasets

The fundamental principle of meta-learning lies in the assumption that different tasks share a certain degree of common
knowledge among them. Accordingly, datasets from a single domain represent a promising avenue for successful
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Table 2: Test accuracy (%) for all datasets. The right column shows the time to run 200 steps of inference at 15 meta
and target samples with 20 features. Datasets that are too small to sample from are omitted. The best model and those
within its error range are highlighted in bold.

Nmeta

model 1 3 5 10 15 Time /s

LR — 60.37 ± 0.28 62.50 ± 0.28 68.62 ± 0.27 71.43 ± 0.26 0.42
KNN — 62.54 ± 0.28 64.19 ± 0.28 68.53 ± 0.27 70.54 ± 0.26 0.22
SVC — 61.61 ± 0.28 63.54 ± 0.28 68.19 ± 0.26 70.28 ± 0.26 0.10

RForest — 57.60 ± 0.29 60.83 ± 0.28 67.67 ± 0.27 70.95 ± 0.26 25.50
CatBoost — 60.53 ± 0.28 62.62 ± 0.28 68.67 ± 0.26 71.69 ± 0.26 12.22

TabNet — 51.08 ± 0.29 52.89 ± 0.29 58.00 ± 0.29 60.72 ± 0.29 108.42
FTT — 61.43 ± 0.28 63.73 ± 0.28 68.87 ± 0.26 69.94 ± 0.26 40.61

STUNT — 61.28 ± 0.28 63.64 ± 0.28 69.00 ± 0.26 70.99 ± 0.26 6.79
TabPFN — 57.06 ± 0.28 60.17 ± 0.28 66.98 ± 0.27 70.38 ± 0.26 24.9

Iwata — 62.48 ± 0.31 64.52 ± 0.31 68.04 ± 0.30 69.25 ± 0.30 0.27
FLAT 58.83 ± 0.14 64.40 ± 0.13 66.40 ± 0.14 69.86 ± 0.12 71.50 ± 0.14 0.45

FLATadapt 58.87 ± 0.13 64.43 ± 0.10 66.52 ± 0.11 70.35 ± 0.12 71.89 ± 0.12 8.65

knowledge transfer. Below, we demonstrate how FLAT can be applied to a subset of 29 UCI datasets associated with
medical diagnosis. We selected this subset for illustrative purposes, as a smaller subset of datasets from a known domain
allows for easier model interpretation (see Appendix A.3).

As shown in Table 1, FLAT significantly improves upon the baselines at few-shot tabular classification, with an increase
in average accuracy by up to 2pp over the best baseline. FLAT also ranks higher than all baselines for all Nmeta (Fig. 2).
Detailed results are available in Appendix Fig. A1. Another advantage of pre-trained models like FLAT and Iwata is
that they can generate meaningful predictions when the meta dataset contains only a single class. At Nmeta = 1, FLAT
achieves an average accuracy of 59.7%, which is a significant improvement over the expected 50% accuracy for random
guessing. The accuracy of FLAT increases with the number of meta samples, yet the relative advantage of FLAT over
standard supervised models decreases as Nmeta increases. This is aligned with FLAT’s intended design as a few-shot
learner; for a larger number of labeled samples, “many-shot” learners become more competitive.

We demonstrate model interpretability by visualizing the dataset embeddings e (Fig. 3). To reveal the underlying
clustering pattern, we sample an increasing number of meta samples to reduce variance in the generated embeddings.
As Nmeta increases, FLAT produces embeddings that form clear clusters in the embedding space. This illustrates that
the task encoder learns highly expressive embeddings, allowing the weight-generating network to produce parameters
for the target network tailored to each dataset and that t-SNE visualizations are useful in determining which datasets the
model considers similar. An additional figure with cluster centroids annotated by the corresponding datasets can be
found in Appendix A.3.

4.2 Training a generalist few-shot learner

In this section, we use all 118 UCI datasets for training and testing to demonstrate that FLAT can improve few-shot
prediction accuracy on datasets spanning multiple domains. We also show how FLATadapt can further improve
model performance. Results presented in Table 2 show that, on average, FLAT is able to outperform the baselines
at Nmeta = 3, 5, 10 while matching the baselines at Nmeta = 15. FLATadapt consistently improves upon FLAT
and exceeds all the baselines by up to 2.33pp. Similarly to the previous example, FLAT(adapt) demonstrates a more
substantial performance boost over baselines for smaller Nmeta. Additionally, Table 2 displays the time for 200
inferences on tasks with 15 rows and 20 columns. FLAT shows a fast inference time comparable to simple baselines
like LR or KNN, while FT-Transformer and TabNet are significantly slower as they need to be re-fitted to each task’s
meta dataset, which is computationally expensive. FLATadapt is slower than FLAT as it requires a few additional steps
of gradient descent during inference. A more detailed comparison of inference time vs. the number of columns is given
in Appendix A.5.

4.3 Additional experiments

Multi-class classifcation To demonstrate FLAT’s applicability to multi-class datasets, we conduct additional experi-
ments on 3-class classification tasks. We select datasets with at least 3 classes (65 in total) and modify the target network
to output 3 logits instead of 2. We train and test FLAT models using the 4-fold evaluation procedure without additional

7



hyperparameter tuning. Table A4, in the Appendix shows that FLAT outperforms all baselines at Nmeta = 3, 5, 10
and remains slightly behind at Nmeta = 15. FLATadapt improves on FLAT by up to +1.25pp, resulting in the highest
average accuracy at Nmeta = 3, 5, 10 and is within the error of the best baselines at Nmeta = 15.

FLATadapt We visualize the impact of FLATadapt compared to FLAT. 2-D synthetic data (corresponding to 2 columns)
is input to a model pre-trained on the UCI datasets. The meta dataset is a perturbed 4×4 grid with label 1 if x1 > x2. We
plot meta data points and the learned decision boundary in Fig. 4. FLAT creates a decision boundary that misclassifies
two points from the meta dataset. FLATadapt shifts the decision boundary closer to the true boundary, y = x, resulting
in the correct classification of previously misclassified points.

FLATadapt

FLAT

FLATadapt

FLATFLATadapt

FLAT

Figure 4: Decision boundaries of a FLAT and
FLATadapt on synthetic data. Meta data points
are shown as dots. Red is 1, blue is 0. FLAT is
misaligned near the boundary which is corrected
by FLATadapt.

Imbalanced meta datasets The main body of this paper uses meta
datasets that have binomially distributed positive and negative sam-
ples. In Appendix A.4.1, we investigate the performance of FLAT
depending on how balanced Dmeta is. FLAT greatly outperforms
baselines for imbalanced Dmeta and is within the error of the best
baseline when the Dmeta is perfectly balanced.

Single sample predictions FLAT is able to make predictions with
only a single labeled sample, whereas standard supervised models
typically require at least one example from each class to perform
inference. In Appendix A.4.5, we visualize FLAT’s decision bound-
aries when Nmeta = 1 and argue that FLAT essentially learns prior
knowledge on how “close” a target sample should be to the meta
sample in order to be assigned the same class.

When does FLAT result in large performance gains? Training
FLAT on all UCI datasets resulted in slightly lower performance
gains compared to the medical example. Moreover, the performance gains vary across the test datasets (see Fig. A1 and
Fig. A2). In Appendix A.4.3, we show through a toy example that FLAT delivers the highest performance gains when
the pre-training tasks contain similar structural relationships between the variables as the downstream test tasks.

5 Conclusions

Limitations & Future work The target network employs a fully connected graph between all columns, resulting
in a time complexity of O

(
(N col)2

)
; therefore, operating on datasets with a large number of columns can be slow

(Appendix A.5). We would also like to extend the FLAT architecture to multi-class learning with any number of classes
as well as regression problems, e.g. by adding multiple classification heads. Finally, by masking out missing values, it
becomes theoretically possible to work with incomplete datasets. Missing values in the meta datasets can be handled by
omitting them from the sum in equation 1, and missing target features can be handled by removing the corresponding
node from the GAT. We leave these extensions for future research.

Impact We believe our work offers a valuable addition to the advancement of few-shot tabular learning. While
traditional machine learning models often require vast amounts of data to train, FLAT enables meta-learning across
datasets with heterogeneous feature spaces, reducing the need for large training datasets. This enhanced data efficiency
can accelerate research and development in various domains. Some of the most common real-world scenarios with
limited data are medical applications. Gathering extensive labeled patient data often proves challenging, particularly
when dealing with rare conditions where imbalanced datasets are prevalent. For instance, FLAT presents a solution for
the integration of datasets from several hospitals with potentially variable quantity and nature of recorded features in
order to make improved predictions about patients’ health based on just a few labeled examples.

Summary We present a new framework for few-shot learning on tabular datasets, an area that has been relatively
underexplored despite its significance. Unlike most existing meta-learning methods that operate under the assumption
of homogeneous feature spaces, our effectively handles diverse feature spaces, making it a novel solution in the
meta-learning paradigm. To the best of our knowledge, the only other existing meta methods capable of addressing
varying feature spaces are TabPFN and the model proposed by [31], both of which, as demonstrated in our study, are
outperformed by FLAT. Additionally, we highlight the importance of imbalanced learning in few-shot scenarios and
demonstrate FLAT’s effectiveness even on highly imbalanced datasets.
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A Appendix

A.1 Implementation details

In this section, we provide a detailed description of the implementation of our model.

To determine the hyperparameters for FLAT and the baselines, we performed tuning on a random subset of 40 out of the
118 datasets. From each selected dataset, 25% of rows were randomly sampled to be used in validation. This collection
of validation datasets is referred to as Dval. Meta and target datasets were subsampled from the datasets in Dval in
the same way as described in sec 4. This procedure ensured that all models’ parameters were tuned on the same data.
Hyperparameter tuning on Dval was performed only once for each model and the selected parameters were used for all
experiments. Tuning was performed at Nmeta = 10.

A.1.1 FLAT

Dataset encoder F We base our implementation on the original Dataset2vec [14]. f1 and f3 are residual MLPs, each 4
sequential MLP blocks with skip connections between each intermediate layer. f2 is a 2-layer MLP. The MLPs have
hidden size 64 and output size 64 for the dataset embedding e. ReLU activation functions are used for the entire model.

Column encoder G Our column encoder G is a 2-layer MLP with hidden dimension 64 and output dimension 15, which
when concatenated with the column value gives a 16-dimensional vector as inputs to the target network Φ. We initialize
the output biases of this layer to 0 at the start of training.

Weight decoder H The weight generators hl are a series of linear MLPs with no bias terms. L2 weight normalization
is applied on all generated weights with a learnable weight norm, one learnable norm is used for each GAT parameter
(shared across GAT layers) and one for the final linear layer. We initialize the norms by training a model with initial
norm 1, recording the final norm at the end of training and using this value as the new initialization for all training runs.

Target network Φ The target network, implemented as a GAT, has 2 heads, 2 layers, a hidden dimension of 128, and
an output dimension of 16. We use a modified GAT implementation from PyTorch Geometric [37] which allows for
weight generation. The final classification layer is a single layer with an output size 2. A softmax layer is used for
classification probabilities.

Optimization Our model is trained using the AdamW [38] optimiser with lr=5e-4, eps=3-4, weight_decay=1e-4. We
train with batch size 3 for 62000 steps, taking around 11 minutes per model on a Ryzen 5800X3D CPU, depending on
the dataset split used for training.

FLATadapt Throughout this paper, FLATadapt uses the exact same already-trained FLAT models. FLATadapt uses
5 steps of gradient descent on Dmeta using the Adam optimizer [39]. Column embeddings use lr=1e-3, and weight
embeddings use lr=7.5e-2, all other parameters are AdamW defaults. Note that a higher learning rate is needed for the
weight embedding. Only the dataset and column embeddings are changed in this process. FLATadapt only changes the
inference process and not the training process.

A.1.2 Baselines

The baselines used are based on existing / official implementations. Logistic regression, K-nearest neighbors,
support vector classifier, and random forest use the scikit-learn implementation [40]. CatBoost [36] used the
Python implementation at https://github.com/catboost/catboost/releases/tag/v1.1.1. [24] is based on the implementa-
tion at https://github.com/dreamquark-ai/tabnet/releases/tag/v4.0. FT-Transformer [25] uses the implementation at
https://github.com/lucidrains/tab-transformer-pytorch/releases/tag/0.2.5.

Our STUNT implementation is modified based on the official implementation at https://github.com/jaehyun513/STUNT
[12]. The original implementation assumes a very large unlabeled dataset but our unlabeled dataset, Dmeta, is small.
STUNT performs pre-training by using a random subset of columns to generate targets which fails if multiple columns
are identical (it may not be possible to generate unique, balanced pseudo-labels from Dmeta). This is more likely in our
small unlabeled dataset. Therefore, we allow for reducing the number of shots during training. Furthermore, the use of
a very small unlabeled dataset results in overfitting if STUNT is trained for many iterations. In our validation testing,
we found a very low number (5) of training steps performed best.

For each of the baselines (except logistic regression), we performed extensive manual parameter tuning on the validation
data until we could no longer improve performance. Since our validation dataset is relatively large and we randomly
sample rows and columns which acts as data augmentation, we are confident the parameters are not over-fit. To validate,
we compare our tuned baselines to default baselines in Table A1 on a different random dataset collection to what was
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used for tuning. Note logistic regression and TabPFN have no tunable parameters and STUNT and TabNet do not have
suitable default hyperparameters. Our tuned baselines are within error or better than the default baselines.

Table A1: Accuracy (%) comparison between our tuned baselines vs default parameters with N col = 10. Sampling
errors are ± 0.25%

model KNN RForest SVC CatBoost FTT Iwata

Base 60.67 66.49 62.19 68.08 65.80 58.58
Tuned 66.03 66.52 66.47 68.04 66.54 67.77

A.2 Details of the main experiments

This subsection includes the remaining details of the experimental procedure used to report the results from sections
4.1 and 4.2. First, we outline the details common for both the medical example (sec. 4.1) and the general experiments
(sec. 4.2).

To create the training, Dtrain, and testing, Dtest, collections of datasets we split the available datasets (29 for the
medical example, 118 for the generalized scenario) into N folds. We loop through all N folds and use each fold as
the testing collection once, while the remaining N − 1 form the training collection. In this way, no samples used to
pre-train FLAT belong to the same dataset as used during testing, ensuring a fair comparison against non-meta baselines
fitted on just a few samples from Dmeta of each task. If a dataset is too small for a given Nmeta, it is excluded from
the training/testing collection. The meta training tasks are generated with a randomized sampling procedure including
uniform sampling of the datasets from Dtrain, binomial subsampling of Nmeta +N target rows, and uniform sampling
of columns. For testing, to ensure the reproducibility of the results and a fair comparison between the models, we sample
200 tasks per each dataset; these tasks are fixed for all models throughout all testing runs. The errors reported in the
tables are the standard deviation of predictions for each model, averaged over all N testing folds. The errors for FLAT
and FLATadapt are additionally averaged over several random initial seeds. The variance of the results comes from two
factors: 1) the random sampling of testing tasks, which are the same for all models, 2) the model-specific variance for a
given task. Since we evaluate all of our models on the exact same tasks, the differences in model performances have a
lower variance than what the error bars indicate.

Illustrative example: medical datasets For the results presented in Table 1, FLAT was trained using meta and target
datasets with 10 rows each (Nmeta = N target = 10) in order to demonstrate that FLAT can be used with different
Nmeta during training and testing. The results for FLAT are averaged over 3 initial random seeds. We employed the
N -fold validation strategy with N = 10.

Training a generalist few-shot learner For the results in Table 2, FLAT was trained on the same number of meta rows,
Nmeta as during testing, with the exception of Nmeta = 1 and Nmeta = 3 where FLAT was trained with Nmeta = 5.
N target was set to 15 during training and 5 for testing. Results for FLAT are averaged over 5 initial random seeds. We
employed the N -fold validation with N = 4.

A.2.1 Accuracy per dataset for the main experiments

Figures A1 and A2 show the detailed results summarised in Tables 1 and 2 results respectively. Note that TabPFN is
limited to datasets with at most 100 features. The accuracy of TabPFN on larger datasets, i.e. arrhythmia, semeion,
hill-valley, musk-1, musk-2, low-res-spect are therefore missing.

A.3 Model interpretability

A.3.1 t-SNE embeddings

Fig. A4 depicts the same t-SNE embeddings as shown in Fig. 3 from section 4.1 (Nmeta = 100) with additional
annotations of the centroids for each dataset, computed as the geometric median. The visualization of the embeddings
enables us to gain further insight into which datasets are perceived as similar by the model. Specifically, the embeddings
of the testing dataset heart-cleveland are intermingled with the embeddings of the training dataset statlog-heart,
indicating a high degree of shared knowledge between the two datasets. This observation is particularly satisfying
given that both datasets pertain to the cardiological conditions of patients, with the response variable representing
the presence of heart disease. Furthermore, the echocardiogram test dataset, which describes the survival of patients
after a heart attack, is clustered close to the heart-switzerland training dataset, which also deals with cardiological
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Figure A1: Accuracy (%) of FLAT vs. baseline models for the medical datasets. Evaluated on task datasets with
Nmeta = 5. Columns (models) ordered by average model ranks. Rows (data sets) ordered by relative advantage of
FLAT(adapt) vs. the best-performing baseline.
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Figure A2: Accuracy (%) of FLAT vs. baseline models for all 118 datasets. Evaluated on task datasets with Nmeta = 10.
Columns (models) ordered by average model ranks. Rows (data sets) ordered by relative advantage of FLAT(adapt) vs.
the best-performing baseline.
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52.5 52.4 54.6 54.6 54.4 51.2 53.7 52.7 58.4 57.2 57.7 58.1
63.6 80.9 81.7 82.0 81.6 82.4 83.1 82.1 83.6 82.6 83.1 82.8
61.8 71.7 74.3 74.2 72.4 73.2 73.7 75.0 73.8 75.5 74.9 74.7
54.2 62.8 62.3 61.7 65.2 65.8 65.9 64.1 72.0 69.2 71.1 71.8
54.4 67.9 70.5 68.6 72.3 70.6 71.8 69.1 76.1 75.7 75.5 75.2
48.8 48.7 50.6 52.1 51.5 47.3 48.8 50.5 49.9 50.1 51.1 51.8
64.0 90.0 88.0 88.0 88.9 89.8 88.8 88.9 90.7 88.7 89.7 90.1
53.7 63.3 65.3 67.0 64.3 66.9 64.7 66.4 64.1 65.5 66.2 66.0
65.0 72.4 75.1 73.4 75.0 76.5 76.7 75.1 81.5 80.4 80.4 81.3
53.9 64.8 65.6 69.9 67.2 68.2 69.1 67.4 67.7 67.5 69.0 68.8
51.1 56.5 59.7 60.6 60.1 61.1 61.3 57.9 63.0 60.2 61.9 63.6
55.6 58.0 58.7 56.5 57.9 57.8 58.9 59.9 62.6 61.2 62.3 61.3
63.7 73.1 75.0 73.4 71.0 72.9 75.4 73.8 73.2 76.2 76.0 74.9
55.5 63.2 64.2 64.3 66.3 62.2 63.0 65.7 58.2 66.4 65.6 65.1
62.3 70.2 72.4 71.7 71.9 74.1 73.4 72.4 77.7 74.7 76.3 76.6
51.5 51.4 52.7 53.6 53.1 54.0 53.1 54.8 55.0 52.3 54.1 53.6
59.4 58.9 64.0 63.5 60.6 60.7 62.3 62.9 67.1 64.7 65.7 67.2
50.5 50.3 50.7 50.2 50.1 49.2 50.6 49.9 49.3 50.3 49.2 50.6
64.0 88.8 83.1 83.8 84.5 88.6 87.9 88.6 92.5 87.8 91.0 91.8
80.0 99.5 99.3 99.8 99.3 99.7 99.0 99.6 99.9 99.0 98.4 98.9
52.7 54.9 55.9 56.0 58.4 58.7 57.2 56.4 61.9 56.7 60.4 62.7
49.7 47.2 48.6 48.9 50.6 49.3 47.6 50.2 49.4 49.3 49.0 49.2
71.7 96.2 94.7 95.6 94.3 95.6 95.9 95.6 97.2 94.9 95.6 96.3
57.9 63.7 67.4 66.7 69.8 67.8 67.2 67.9 72.6 65.8 71.8 70.9
49.6 50.6 49.8 51.3 49.3 50.4 49.2 50.1 48.4 48.9 50.2 49.6
52.7 54.9 59.1 59.9 57.2 55.1 54.9 57.8 59.2 56.2 58.5 58.1
55.1 68.3 67.9 69.5 72.1 71.8 71.1 70.1 73.9 70.0 72.1 73.6
56.0 59.9 57.8 58.0 54.6 56.8 59.2 58.2 50.3 59.6 61.2 58.1
54.6 61.7 64.0 64.6 63.0 64.2 63.1 65.8 58.7 66.9 66.6 65.0
57.2 61.8 67.4 67.2 63.6 65.4 63.9 64.5 59.5 65.5 65.7 65.3
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61.8 78.0 78.7 78.0 78.2 80.5 80.7 78.2 79.0 82.4 80.7 80.2
65.8 94.7 95.2 95.3 95.1 95.7 94.6 92.3 97.7 94.8 95.5 96.4
64.8 84.3 84.7 84.3 84.1 85.3 84.8 83.7 88.9 87.6 87.3 86.7
55.4 58.8 62.7 63.5 62.4 64.6 64.8 60.2 65.9 61.1 64.0 63.7
53.3 49.7 50.3 50.6 49.7 51.6 52.8 50.5 51.9 52.3 50.9
75.0 85.4 87.4 88.6 85.0 84.1 84.8 87.5 86.0 85.1 86.1 86.1
53.2 56.1 63.6 62.8 61.1 60.2 58.8 60.3 61.0 59.3 61.0 61.1
67.5 96.4 98.4 97.4 96.5 98.6 96.9 96.8 87.0 97.3 96.0 97.1
51.9 55.1 54.1 56.5 54.8 56.3 55.7 53.0 55.5 55.1 54.8 53.8
60.3 83.1 83.3 83.1 88.3 85.8 85.1 84.4 84.7 86.1 85.6 86.3
65.2 81.5 84.2 81.7 82.4 82.6 85.0 82.4 85.1 84.1 83.0 82.2
54.1 52.1 53.8 53.8 51.5 53.3 53.0 56.2 55.3 53.4 54.9 53.3
54.1 57.7 65.5 66.0 59.9 59.0 59.5 62.8 60.2 62.8 63.5 63.1
59.8 70.3 71.2 69.6 70.6 72.1 72.8 70.2 72.6 74.5 74.1 71.5
55.6 57.5 58.8 57.8 58.9 58.9 58.9 58.2 61.9 58.9 59.8 58.9
65.0 76.2 71.2 70.1 74.1 76.9 78.3 74.8 78.8 77.6 77.6 75.7
52.4 60.3 61.1 62.8 59.7 63.9 60.4 56.4 62.1 60.8 64.0
51.9 50.1 52.5 52.9 51.0 50.6 50.3 52.0 51.5 51.7 50.2 49.8
57.8 69.6 68.4 67.2 67.5 67.6 71.8 68.7 67.9 71.5 68.5 71.2
51.4 51.8 55.2 59.2 60.6 58.3 56.0 57.8 52.6 54.6 57.3 60.5
63.6 78.6 81.1 80.0 81.8 80.2 79.9 80.7 79.8 77.5 79.8 78.3
51.0 54.5 55.2 58.6 56.2 55.4 55.9 53.2 53.6 56.4 55.2 55.0
50.2 51.6 52.1 51.5 52.8 49.7 50.1 53.9 52.8 51.5 50.3 50.8
50.7 51.1 52.0 50.2 49.6 52.8 52.4 51.0 50.0 52.1 48.9 50.6
50.7 55.1 57.7 57.6 58.2 56.2 59.0 58.6 63.5 59.9 60.3 59.6
63.9 76.4 76.7 78.0 76.9 77.5 76.4 80.9 70.5 75.0 76.8 78.8
61.9 73.0 75.7 74.9 71.0 74.0 74.0 73.0 75.9 76.0 73.4 71.8
53.3 57.6 61.5 60.5 60.6 56.7 57.5 59.4 55.7 56.1 58.0 57.3
48.9 52.2 54.1 54.6 52.8 52.1 51.3 53.8 49.0 51.3 50.3 50.7
61.4 76.8 78.1 80.6 77.2 76.7 76.1 80.0 74.4 74.7 75.6 76.7
52.3 52.9 53.4 53.3 53.6 53.6 53.1 53.7 51.3 51.0 48.7 49.5
55.3 55.9 55.0 56.3 56.0 56.1 55.6 55.2 61.9 58.8 59.1 56.9
53.4 56.3 56.3 58.2 55.8 58.8 59.2 52.5 56.7 54.1 56.4
58.7 83.9 77.1 76.1 82.7 87.3 87.5 81.3 91.8 89.2 86.7 91.0
62.0 81.3 82.2 78.9 77.3 80.9 80.0 80.1 72.9 77.0 79.0
51.0 55.4 54.8 55.0 55.5 56.0 56.5 54.5 51.3 51.6 51.2 52.2
52.2 53.1 53.7 54.1 57.6 57.8 56.2 65.9 59.0 63.7 60.5
60.6 60.5 63.6 62.9 60.5 56.0 61.0 63.9 67.1 60.2 61.7 63.4
74.2 92.3 91.5 89.0 97.1 92.3 92.5 90.7 92.8 92.7 90.7 93.8
61.4 76.2 69.3 73.2 78.8 67.5 75.1 74.0 72.9 73.5 71.9 73.3
55.6 55.1 54.3 55.1 59.0 54.3 55.7 56.6 53.2 56.5 52.0 52.3
65.6 79.0 84.1 86.9 82.9 76.9 79.2 81.2 76.4 79.0 79.9 81.0
54.7 60.5 69.3 72.8 61.2 61.1 64.3 65.6 60.2 63.5 65.2 66.1
73.8 88.5 87.5 83.4 88.8 86.6 88.7 88.7 82.0 88.0 81.0 81.8
51.6 53.1 53.3 54.7 54.9 51.5 53.4 54.5 54.1 54.3 46.8 51.9
53.5 69.2 72.6 76.9 68.8 76.5 72.9 71.2 63.3 62.8 68.7 76.9
56.4 67.7 67.2 67.9 69.3 68.5 68.3 69.6 61.7 59.3 60.7 64.4
63.7 84.6 73.4 74.0 82.8 80.0 86.3 78.9 74.1 74.7 77.2 83.4
54.6 61.2 60.6 58.2 53.3 59.4 58.2 67.3 84.5 67.1 75.0 80.9
57.7 66.1 69.0 70.8 70.5 70.5 69.3 69.0 76.9 71.1 67.3 73.9
63.5 78.3 77.1 77.9 82.6 68.5 71.2 81.2 66.9 75.4 73.4 72.9
57.8 71.1 65.4 69.6 78.5 65.1 70.7 68.1 58.0 71.1 66.8 68.1
56.4 78.8 84.8 97.8 70.9 82.0 80.0 91.3 81.8 77.7 85.8 87.2
60.1 73.5 71.9 73.5 86.4 52.1 58.0 85.9 85.5 76.6 73.7 74.5
52.5 67.2 78.6 87.7 62.9 64.3 66.0 67.5 57.2 63.3 66.8 65.5
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Figure A3: Plot of attention weights between nodes of the first layer of the GAT. Plots generated for 4 random
subsamples of acute-inflammation, pima, iris, and seeds datasets.

diseases. Finally, the parkinsons test dataset is clustered next to the vertebral-column-2classes training dataset. The
parkinsons dataset aims to discern healthy people from those with Parkinson’s disease, while the response variable of
the vertebral-column-2classes corresponds to the presence of an abnormal vertebral column condition. According to
Lee et al. [41], patients with Parkinson’s disease are at a higher risk of developing osteoporotic vertebral compression
fractures. These findings validate that FLAT can learn a highly expressive embedding space facilitating effective
knowledge transfer for few-shot learning on tabular datasets.

A.3.2 Attention maps

The GAT produces attention maps which may be useful in determining what features the network focuses on. Between
each pair of nodes, including itself, the attention weight determines how strongly to weigh each node’s contributions,
represented as αi,j in Equation 5. Nodes that have a higher weighting have more importance in the final result. In
Fig. A3, we display the attention map for four random meta-datasets sampled from datasets that have their column
names available. For instance, let’s consider the acute-inflammation dataset, which specifically focuses on urinary
system diseases. In this dataset, we observe that the variable called Micturition which indicates the presence of pain
during urination, carries the highest weight within the meta-subsample. Another illustration is the seeds dataset, which
classifies different types of wheat. We can observe how the variable Area, which measures the area of the kernels,
carries the most weight.
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Figure A4: t-SNE plot of the medical datasets embeddings. The embeddings are generated for tasks coming from both
Dtrain and Dtest as defined by one of the 10 folds. In the above example Dtest = {echocardiogram, heart-cleveland,
parkinsons}, the remaining datasets are included in the training collection. Lighter markers correspond to individual
embeddings of each task. Bigger, darker markers with text annotations correspond to the geometric median computed
for each dataset. The embeddings form clear clusters in agreement with their datasets.
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Table A2: Comparison of imbalanced few-shot learning with standard K-shot learning on the 29 medical datasets.
Accuracy of FLAT vs. the baselines when the number of examples per class is the same (equal #labels), and when it is
sampled from a binomial distribution (binomial #labels).

Nmeta

equal #labels binomial #labels

model 2 6 10 2 6 10

SVC 63.66 ± 0.27 69.23 ± 0.26 70.55 ± 0.25 63.66 ± 0.27 66.68 ± 0.27 70.23 ± 0.26
LR 63.30 ± 0.28 69.73 ± 0.26 71.75 ± 0.25 63.36 ± 0.28 65.81 ± 0.27 70.39 ± 0.26

CatBoost 62.75 ± 0.28 68.82 ± 0.26 70.91 ± 0.25 62.36 ± 0.28 65.94 ± 0.27 70.45 ± 0.26
RForest 62.70 ± 0.28 69.83 ± 0.26 71.97 ± 0.25 63.06 ± 0.28 65.39 ± 0.27 70.64 ± 0.26

KNN 63.99 ± 0.27 68.15 ± 0.26 69.89 ± 0.25 64.05 ± 0.27 66.90 ± 0.27 69.51 ± 0.26
TabNet 50.67 ± 0.29 56.02 ± 0.29 59.98 ± 0.28 51.15 ± 0.29 54.37 ± 0.29 58.66 ± 0.29

FTT 62.86 ± 0.28 68.52 ± 0.26 70.27 ± 0.26 62.52 ± 0.28 66.59 ± 0.27 69.72 ± 0.26
STUNT 62.32 ± 0.28 69.32 ± 0.26 71.22 ± 0.25 62.62 ± 0.28 67.26 ± 0.27 70.93 ± 0.26
TabPFN 60.43 ± 0.27 68.69 ± 0.25 70.28 ± 0.24 60.73 ± 0.27 63.28 ± 0.26 67.94 ± 0.25

Iwata 64.05 ± 0.67 68.97 ± 0.63 70.32 ± 0.62 64.23 ± 0.67 68.38 ± 0.64 70.84 ± 0.62
FLAT 64.69 ± 0.12 70.07 ± 0.10 71.53 ± 0.11 64.91 ± 0.11 69.88 ± 0.11 71.99 ± 0.10

A.4 Additional experiments

A.4.1 Classic K-shot learning

The research area of few-shot learning with imbalanced classes remains largely unexplored. This study expands on
previous findings from the medical example presented in section 4.1 by incorporating the standard definition of K-shot
learning. Table A2 presents a comparative analysis of the results for the FLAT model from section 4.1 tested on meta
and target datasets containing an equal number of examples per class (equal #labels) and tested using the randomized
sampling method. The setting with an equal number of labels, where Nmeta = 2, 6, 10, corresponds to the standard 1-,
3-, 5-shot learning definitions. The binomially sampled classes case is comparatively more challenging, which results
in a decreased accuracy for the baseline models. The performance of FLAT remains the same under both sampling
regimes and outperforms all baselines, except for the 5-shot case, where linear regression matches the performance of
FLAT.
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Figure A5: Median model ranks for equal sampling scheme (left) and binomial sampling (right).

A.4.2 Balance of the meta-dataset

This subsection explores the variability of FLAT predictions based on the balance of Dmeta. We maintain a fixed
size of 10 for Dmeta and sample k positive samples per batch and the remainder of each batch with the opposite
label. k = 5 gives a balanced batch corresponding to the classic definition of 5-shot learning while increasing k gives
imbalanced batches. The binomial sampling scheme in the main paper is equivalent to re-sampling k every batch
with k ∼ Bin(p = 0.5, n = Nmeta) (with the additional restriction of at least one example per class) which results in
sampling balanced and imbalanced datasets, with the average dataset having an equal number of positive and negative
labels. A plot of results as k varies is shown in Figure A6. The models used are the same as in the main paper, they are

18



5 6 7 8 9
k, No. of most common class

52.5

55.0

57.5

60.0

62.5

65.0

67.5

70.0

Ac
cu

ra
cy

 / 
%

FLAT
FLATadapt
LR
KNN
RForest
CatBoost
FTT
TabPFN
Iwata

Figure A6: Model accuracy varying the balance of meta-dataset with total 10 rows, where k = 5 is perfectly balanced
and k = 1 contains 9 instances of one class. Dotted lines show FLAT(adapt) accuracy when k is binomially sampled.

trained with k ∼ Bin(p = 0.5, n = 15) (excluding k ∈ {0, 15}). Retraining models with fixed k during training would
have likely given even better performance, though we did not try due to the number of models that would need to be
trained and training on n = 15 rows gave slightly improved performance vs n = 10. FLATadapt outperforms FLAT
and the other baselines, except at k = 5 where linear regression and KNN match FLATadapt. All of the other models
significantly drop in performance as the meta-dataset becomes more imbalanced, while FLAT(adapt) maintains strong
performance. Note TabNet is excluded due to much lower accuracy than all the other baselines and very slow inference.

A.4.3 When does FLAT result in large performance gains?

As observed, while FLAT delivers on average higher accuracy than the baseline models, the performance gains are not
consistent across all testing datasets. These can vary anywhere between -2pp to +7pp. In this section we aim to further
investigate conditions under which FLAT’s pre-training is the most effective.

We hypothesise that some datasets used for testing may share few common characteristics with the training datasets,
which could lead to inferior performance. If the model hasn’t encountered certain feature-target relationships during
training, its ability to leverage its prior knowledge during testing may be limited. We illustrate this with the following
two experiments:

Experiment 1 We identified 4 datasets with identical feature spaces. We visualized their correlation matrices and
computed the pairwise Euclidean distances between them (Fig. R2). This analysis suggests that the heart-hungarian and
heart-cleveland datasets exhibit high similarity, while heart-va is the most distinct. We conducted a leave-one-out testing
procedure, where one dataset is used for testing and the remaining three are used for training. We expect that testing on
heart-va would result in the lowest performance gains of FLAT, while testing on heart-cleveland or heart-hungarian, the
highest. The results in Table R3 align with our expectations.

Experiment 2 We further examined how the degree of similarity between the train and test datasets impacts performance.
We selected heart-cleveland as the test dataset while the other 3 datasets were used for training. We sampled a subset of
columns from the train and test datasets and varied the number of columns that overlap (i.e. columns in the intersection
of the train and test datasets). Figure R3 shows how the performance gains of FLAT(adapt) versus baselines increases
with the proportion of overlapping columns between training and test datasets. Finally, we note that while FLAT may
underperform on some datasets, no baseline consistently outperforms FLAT.

A.4.4 Multi-class classification

Table A4 presents the performance of FLAT(adapt) against the baselines on the 3-class classification tasks.

A.4.5 Predictions based on a single sample

FLAT is able to make predictions with only a single labeled sample, whereas standard supervised models typically
require at least one example from each class to perform inference. In Figure A9, we visualize classification boundaries
obtained with one meta and one target sample. In our procedure, we jointly standardize features. As a result, identical
features of a particular meta and target column are set to 0 and different features to ±1. In Fig. A9 top right pane, when
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Figure A7: Correlation structure relationships between the four datasets used in experiment 1: heart-cleveland, heart-
hungarian, heart-va and heart-switzerland. Left: Correlation matrices of the four datasets. Right: pairwise euclidean /
frobenius distances between the correlation matrices.

Table A3: Mean accuracy (%) of FLAT and FLATadapt and mean performance gains (pp) over three baseline models.
FLAT and FLATadapt exhibit the highest performance gain on heart-cleveland and heart-hungarian datasets. heart-va
does not benefit from FLAT’s pretraining on the remaining datasets.

raw accuracy performance gains over the baselines
- LR KNN SVC

FLAT FLATadapt FLAT FLATadapt FLAT FLATadapt FLAT FLATadapt

cleveland 76.37 76.27 5.17 5.27 3.77 3.87 5.67 5.77
hungarian 77.83 77.77 4.37 4.43 5.87 5.93 3.67 3.73
switzerland 53.30 52.30 2.20 3.20 -0.50 0.50 2.60 3.60
va 51.00 49.77 -0.53 0.70 -1.23 0.00 -0.83 0.40

the meta and target values are the same for both coordinates, the same class is predicted for the target sample as the
meta sample. In the remaining cases, i.e. where at least one feature differs, the opposite class is assigned. Also shown
are the decision boundaries for if there were more than 1 target sample, allowing for feature values beyond {±1, 0}.
Our model learns prior knowledge on how ’close’ a target sample should be to the meta sample in order to be assigned
the same class, by using standardization to fix the comparison scale.

A.5 Inference time

We perform additional inference time benchmarking, tracking the inference time versus the number of columns in
Dmeta and Dtarget. We tested on up to 400 columns, which should cover many real-world dataset sizes. The results are
presented in Fig. A10. We observe that the inference time for FLAT is lower than the majority of baselines. However,
FLATadapt due to its additional extra adaptation steps is noticeably slower.

A.5.1 In- vs. out-of-sample and -domain

Tables 1 and Fig. A1 present the results obtained from test datasets that were not used during the training process, all
of which originate from the medical domain. Two questions may arise: 1. Does the performance of FLAT exhibit a
significant decline when evaluated on unseen datasets, in comparison to the datasets used for training? In other words,
does it suffer from overfitting to the training set? 2. Can a model trained on medical datasets be effectively applied to
tasks derived from a different domain?

Table A5 illustrates the average difference in accuracy between FLAT and the baseline models, where FLAT is trained
on the medical collection of datasets as described in section 4.1, and subsequently evaluated on the following: a)
training datasets from the medical collection, b) test datasets from the medical collection, and c) test datasets from
domains outside of medicine. Results were obtained on test tasks with Nmeta = 5. As anticipated, FLAT exhibits
the highest relative advantage over the baseline models when tested on tasks generated from the datasets seen during
training. Notably, when tested on unseen datasets from the medical domain, FLAT’s performance decreases by a small
amount (0.87pp). This indicates that FLAT does not suffer from overfitting to the training set and that FLAT is able to
generalize to new, unseen tasks. Furthermore, FLAT, trained solely on the medical subset, demonstrates a comparably
strong performance on unseen datasets from other domains. The way in which FLAT extracts and shares information
between datasets is indeed invariant to the domain. Instead, what is fundamental for FLAT’s inner workings are the
structural relationships between the columns of the datasets. It is possible for a financial dataset, for instance, to exhibit
structural similarities to a previously observed medical dataset, enabling knowledge sharing to occur regardless of the
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Figure A8: Accuracy of FLAT and FLATadapt and the performance gains over three baseline models. %overlap is the
proportion of columns which are common for training and testing datasets.

Nmeta

model 3 5 10 15

LR 47.48 ± 0.39 54.48 ± 0.38 63.89 ± 0.35 68.57 ± 0.34
KNN 48.90 ± 0.39 56.04 ± 0.38 63.98 ± 0.35 67.62 ± 0.34
SVC 48.44 ± 0.39 55.52 ± 0.38 63.68 ± 0.35 67.72 ± 0.34

RForest 44.48 ± 0.39 52.42 ± 0.38 62.69 ± 0.36 68.59 ± 0.34
CatBoost 47.42 ± 0.39 53.59 ± 0.38 63.51 ± 0.36 69.02 ± 0.34

FTT 47.55 ± 0.39 54.54 ± 0.38 62.62 ± 0.36 67.07 ± 0.35
STUNT 51.93 ± 0.39 56.11 ± 0.37 63.78 ± 0.35 67.47 ± 0.34
TabPFN 44.50 ± 0.39 50.38 ± 0.38 60.65 ± 0.36 66.48 ± 0.34

Iwata 51.11 ± 0.43 55.11 ± 0.42 59.71 ± 0.41 62.09 ± 0.36
FLAT 54.49 ± 0.35 58.77 ± 0.40 64.71 ± 0.38 67.31 ± 0.44

FLATadapt 55.03 ± 0.32 59.57 ± 0.35 65.61 ± 0.32 68.55 ± 0.33

Table A4: 3-class classification accuracy (%) and succes no. on 65 UCI datasets.

domain. However, as evident from Table A5, the performance improvement of FLAT is slightly higher when tested
on the medical datasets, which aligns with our intuition that datasets from the same domain are more likely to share
structural similarities.

A.5.2 Training on a varying number of columns

We investigated how training on datasets with high or low N col affected performance on datasets with high or low N col.
We split our 118 datasets into 2 categories, datasets with N col > 40 and datasets with N col ≤ 40, denoted as Dlarge

and Dsmall. Within each split, train and test splits were constructed. A model was trained on each test split of Dlarge

and Dsmall each model was tested on both test splits to see how the training N col affected test performance. Let Mlarge

and Msmall denote models trained on Dlarge and Dsmall, respectively. The same methodology was employed as the
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Figure A9: Decision boundaries for one-shot testing. Meta and target points represented as a red dot and a blue cross
respectively.
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Figure A10: Inference time of different models vs. the number of features.

Table A5: Average difference in accuracy between FLAT and the baseline models. Evaluated on the training datasets,
and test datasets coming from both the same medical domain and from outside the domain.

dataset split test train

medical ✗ ✓ ✓

CatBoost 3.73 3.95 4.82
FTT 2.56 3.18 4.05

KNN 2.01 2.87 3.74
LR 3.74 4.38 5.25

RForest 5.10 5.09 5.96
STUNT 2.73 2.83 3.70

SVC 2.73 3.23 4.10
TabNet 12.72 15.75 16.63

average difference 4.42 5.16 6.03

rest of the paper; during training, the number of columns is uniformly sampled between 2 and the maximum number
possible in a batch and at test time, all the columns are used. Msmall always trained on less than 40 columns in training
while Mlarge was trained on any number of columns up to the largest dataset. Results are shown in Table A6. Msmall

always perform much better than Mlarge. This is a surprising result, since we may expect Msmall to outperform on
Dsmall and Mlarge to outperform on Dlarge. We suspect this is due to over-smoothing during training, since a large
number of columns generates a very large fully connected graph in the target network, though we did not investigate
further. FLATadapt improves the performance of the Mlarge. Note the model trained on Dsmall generalized very well
to Dlarge, despite never being trained on datasets with N col > 40. We conclude that our model is able to generalize to
N col unseen during training, provided it is trained on small N col. Since the model generalizes so well to unseen N col,
it is likely not an important attribute in the latent embedding, e.

Table A6: Accuracy (%) comparing models trained/tested on long/short datasets. Long datasets are datasets with more
than 40 columns. Left shows FLAT, right shows FLATadapt with logistic regression (LR) shown for comparison.

test
train short long

short 72.86 71.75
long 59.92 63.42
LR 71.02 68.41

test
train short long

short 72.64 72.97
long 69.52 66.26
LR 71.02 68.41
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