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a b s t r a c t

Chain event graphs (CEGs) are a recent family of probabilistic graphical models that generalise the
popular Bayesian networks (BNs) family. Crucially, unlike BNs, a CEG is able to embed, within its
graph and its statistical model, asymmetries exhibited by a process. These asymmetries might be in the
conditional independence relationships or in the structure of the graph and its underlying event space.
Structural asymmetries are common in many domains, and can occur naturally (e.g. a defendant vs
prosecutor’s version of events) or by design (e.g. a public health intervention). Whilst two CEG packages
exist in R for modelling processes with asymmetric conditional independencies, there currently exists
no software that allows a user to leverage the theoretical developments of the CEG model family in
modelling processes with structural asymmetries. In this paper, we present cegpy: the first Python
implementation of CEGs and the first across all languages to support structurally asymmetric processes.
cegpy contains an implementation of Bayesian learning and probability propagation algorithms for
CEGs. We illustrate the functionality of cegpy using a structurally asymmetric dataset.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
d

1. Introduction

A probabilistic graphical model (PGM) is composed of a sta-
istical model and a graph representing the conditional inde-
endence relationships between the defining random variables
r events of the underlying model. The graph of a PGM gives
compact visual representation of the factorisation of the joint
robability distribution of a statistical model, and provides a way
o perform efficient inference using local computations [1]. A key
enefit of PGMs is that the gist of its graph can typically be
nderstood by those without formal statistical or mathematical
raining, thereby facilitating interactions between statisticians,
omain experts and decision makers.
Bayesian networks (BNs) [1], currently the most popular fam-

ly of PGMs, have been successfully applied to a wide range of
omains. Notwithstanding the great success of BNs, they do have
ome shortcomings. In particular, BNs are unable to fully describe
rocesses that exhibit asymmetries either in their conditional
ndependence relationships or in their structure. The former indi-
ates the presence of context-specific conditional independencies
hich are independence relationships that only hold for certain
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values of the conditioning variables. The latter refers to the pres-
ence of structural missing values, i.e. missing values that have no
underlying meaningful value, and/or structural zeros,2 i.e. obser-
vations of a zero frequency for a category of a categorical variable
where a non-zero observation is logically restricted. Such asym-
metries are common in many real-world processes especially in
domains such as medicine, risk analysis, policing, forensics, law,
ecology and reliability engineering where processes are best de-
scribed through an unfolding of events (see Zhang and Poole [2],
Boutilier et al. [3],Shenvi et al. [4] and examples in Section 2.1).

Chain event graphs were introduced in Smith and Ander-
son [5] as an alternative to BNs for asymmetric processes. In-
deed, CEGs generalise BNs. They are built from event trees which
provide a natural and intuitive framework for describing the
unfolding of a process through a sequence of events.3 A CEG
is constructed by leveraging the probabilistic symmetries exist-
ing within its corresponding event tree to reduce the number
of nodes and edges required in the representation of the pro-
cess. Therefore, CEGs ensure the resultant statistical model and
graph are no more complex than they need to be to represent
the process. Since their relatively recent introduction, several

2 These are in contrast to sampling zeros that occur due to limitations of
ata sampling.
3 An event is an element or a subset of elements of the state space of a
ariable.
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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ethodological developments have now been made for the CEG
amily. These include learning algorithms [6–8], probability prop-
gation algorithms [9,10] and a d-separation theorem [11] as
ell as tools for causal inference [8,12,13] and diagnostics in
CEG [11]. Applications of CEGs have also been explored in:
ublic health and medicine [4,14,15], educational studies [16],
symmetric Bayesian games [17], migration studies [18], and
olicing [19,20].
Despite the prevalence of asymmetric processes and the

roven flexibility offered by CEGs in modelling such processes,
EGs are yet to be widely adopted by applied statisticians. A
ajor hindrance to the wider application of CEG methodologies

s the lack of existing software, particularly when it comes to
odelling structurally asymmetric processes. There currently ex-

st two R packages for modelling with CEGs, namely ceg [21]
and stagedtrees [22]. However, neither of these supports pro-
cesses with structural asymmetries. In contrast, for modelling
with BNs, there exist several well-developed and maintained
softwares such as Netica [23], Weka [24], BARD [25], GeNIe [26],
and Hugin [27], as well as packages such as bnlearn [28] and
deal [29] in R; and BayesPy [30], GOBNILP [31] and
ayeSuites in Python. In this paper, we present cegpy,4 ,5

the first Python package for modelling with CEGs and the first
package across all languages to support modelling of processes
with structural asymmetries.

2. Modelling with chain event graphs

2.1. Asymmetric processes

Before reviewing CEGs, we discuss the generality of asymmet-
ric processes. Asymmetric structures may occur naturally or by
design. Below we list several examples of such processes.

• A public health intervention: To maximise their effectiveness
given limited resources, interventions are designed to offer
support to those most at risk or most in need (e.g. annual
flu vaccines provided by the UK’s National Health Services
only to those most at risk).

• A medical diagnosis process: Diagnosis involves identifying
the patient’s ailment based on their background covariates
(e.g. age, sex, health history), the sequence of symptoms
already exhibited by them, and the additional symptoms
that they may exhibit in the future according to the pos-
sible diagnoses. Different diseases might have an overlap
of symptoms, and further, not all patients suffering from a
certain disease exhibit all associated symptoms.

• A forensic proceeding: The contrasting explanations for foren-
sic evidence given by a defendant and prosecutor typi-
cally result in asymmetric developments in the sequence of
events in the two arguments.

• A policing process: Depending on the current preparedness of
an individual intent on committing a crime, the sequence of
preparatory tasks undertaken by the individual can be very
varied; e.g. training, help of like-minded criminals, target
identification acquisition of resources.

• A machinery failure process: Several different sequences of
events can lead to faults in machinery, involving different
failing components.

Asymmetric processes are common in several domains (see
Díez et al. [32] and various examples in Shenvi [10],Collazo et al.
[33]). However, a large number of statistical methods and tech-
niques rely on using variables as building blocks in their descrip-
tion of the process and therefore implicitly expect processes to
have symmetric structures.

4 cegpy is hosted on https://pypi.org/project/cegpy/; install with pip.
5 Documentation for cegpy is hosted at https://cegpy.readthedocs.io
 n

2

2.2. Chain event graphs

Like BNs, CEGs are typically used for explanatory modelling
and therefore, a key focus is on computing the posterior prob-
abilities of a CEG and revising these in the presence of new
information. cegpy is designed for such explanatory CEGs. For
a discussion of alternative explanatory PGMs for asymmetric
processes, see Section 2.2.1. Note here that whilst CEGs can also
be used for decision analysis as in Thwaites and Smith [17], this
is currently beyond the scope of cegpy.

A CEG for a process is constructed from the event tree de-
scribing the process which can be elicited from domain experts,
data or a combination of both. An event tree is a directed tree
graph with a single root node which has no parents and a set of
leaves which have no children. Each non-leaf node (also known
as a situation) represents the state an individual may be in, and
its children represent the possible situations that may follow
from this node. A directed edge between a situation and its
child is labelled by the event leading to the transition from the
situation to its child. With each situation, we can associate a
conditional probability vector (CPV) which gives the probabilities
of transitioning from the situation to its children conditional on
an individual being in the state represented by the situation.

An event tree is first transformed into a staged tree that is
then transformed into a CEG. A non-technical summary of these
transformations is presented below.

• Event tree to staged tree: Situations in the event tree whose
CPVs are equivalent are said to be in the same stage and are
assigned the same node colouring to indicate this symmetry.
When all the nodes of the event tree are coloured in this
way, it becomes a staged tree.

• Staged tree to CEG: Situations in the staged tree whose
rooted subtrees (i.e. the subtree obtained by considering
that situation as the root) are isomorphic in the structure-
and colour-preserving sense6 are said to be in the same
position and are merged into a single node, which retains the
colouring of the nodes it merged. All the leaves are merged
into a single sink node. This turns the staged tree into a CEG.

xample 1 (Falls Intervention). Consider a non-pharmacological
ntervention designed to reduce falls-related injuries and fatali-
ies among the elderly as presented in Eldridge et al. [34]. The
ntervention aims to enhance assessment, referral pathways, and
reatment for individuals aged over 65 years who have a substan-
ial risk of falling, living either in the community or a communal
stablishment (i.e. care homes, nursing homes and hospitals).
nder this intervention, a certain proportion of elderly individ-
als would be assessed and classified as low or high risk. Those
ssessed to be at a high risk are referred to a falls clinic for an ad-
anced assessment. All those who are referred, 50% of other high
isk individuals, and 10% of low risk individuals go on to receive
reatment. It is assumed that those who are not assessed receive
either referral nor treatment. We can model this intervention
ith a CEG to analyse its effectiveness in reducing falls among
he elderly.

An uncoloured version of the tree in Fig. 1(a) gives the event
ree describing the above falls intervention. A dataset associated
ith this intervention would describe the living and assessment
ituation, risk status, referral and treatment status (where rele-
ant) and fall status for each individual in the sample. Suppose
hat 50 individuals in our sample lived in a communal establish-
ent, were assessed and are at a high risk of falling, then the

6 This is equivalent to saying that the two subtrees look identical except for
ode labels.

https://pypi.org/project/cegpy/
https://cegpy.readthedocs.io
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Fig. 1. (a) A hypothesised staged tree and (b) the corresponding CEG for the falls intervention described in Example 1.
t
e
b

dge-count associated with the edge e3,7 in Fig. 1(a) would be
0. Further, if the edge-count for edge e3,8 was 120, then we can
ssociate with situation s3 a the vector of edge-counts (50, 120).
his vector would be the data used to update the prior for the
PV of situation s3. To identify the stages in the event tree and
o compute the posteriors of the CPVs of the situations in the
vent tree, a variety of Bayesian learning algorithms can be used.
ituations which are in the same stage have equivalent CPVs.
Fig. 1 shows a hypothesised staged tree and its corresponding

EG for the falls intervention. Here, for visual clarity, situations
hat are in singleton stages or positions are coloured white. Nodes
5 and s7 are coloured light green as they are in the same stage.
This is interpreted as the probability of being referred and treated
(/not being referred but being treated /not being treated) is the
 e

3

same conditional on being in the state represented by s5 or s7.
Further, these nodes are also in the same position as their rooted
subtrees are isomorphic in the colour- and structure-preserving
sense. Therefore, s5 and s7 are represented by the single node w5
in the CEG in Fig. 1(b).

In Appendix A in the supplementary material, we describe
why a BN is less appropriate than a CEG for modelling the falls
intervention.

Formally, let T denote an event tree with a finite node set
V (T ) and edge set E(T ). Let L(T ) and S(T ) = V (T )\L(T ) denote
he sets of leaves and situations respectively. A directed edge
∈ E(T ) from nodes si to sj with label l is an ordered triple given
y (si, sj, l), which is also denoted by eij when there is only a single
dge from s to s . Denote by ch(s ) the children of situation s and
i j i i
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y θθθ si = {θ (eij)|sj ∈ ch(si)} the CPV associated with si where θ (eij)
is the probability of going along edge eij conditional on being at
situation si. Let ΘT = {θθθ si |si ∈ S(T )}.

Definition 2 (Stage). In an event tree T , two situations si and sj
are said to be in the same stage whenever θθθ si = θθθ sj . Additionally,
for θ (ei) = θ (ej) we require that ei = (si, ·, l) and ej = (sj, ·, l)
where edge ei emanates from si and ej emanates from sj.

Identification of the stages in the event tree can be done using
ny suitable learning algorithm (see Section 2.3). Stages enable us
o reduce the parameter space of the CEG model.

efinition 3 (Position). In a staged tree S , two situations si and sj
re said to be in the same position whenever we have ΘSsi

= ΘSsj
here Ssi and Ssj are the coloured subtrees of S rooted at si and

j respectively.

Denote the collection of positions by W. Situations which are
n the same position can be represented by a single node in the
raph of the CEG as their complete future unfoldings are identical.

efinition 4 (Chain Event Graph). A CEG C = (V (C), E(C)) is
efined by the triple (S,W, ΘS ) with the following properties:

• V (C) = R(W) ∪ w∞ where R(W) is the set of situations
representing each position set in W, w∞ is the sink node
and for w ∈ V (C), θθθC(w) = θθθS(w). Nodes in R(W) retain
their stage colouring.

• Situations in S belonging to the same position set in W are
contracted into their representative node contained in R(W).
This node contraction merges multiple edges between two
nodes into a single edge only if they share the same edge
label.

• Leaves of S are contracted into sink node w∞.

Staged trees and CEGs that embed context-specific indepen-
encies but not structural asymmetries are said to be stratified.
hose that additionally embed structurally asymmetries are said
o be non-stratified. The staged tree and CEG in Example 1 are
on-stratified.

.2.1. Alternative PGMs for asymmetric processes
CEGs provide an alternative to BNs for processes with context-

pecific conditional independencies and/or asymmetric struc-
ures. With major modifications (typically tree-based), a BN can
epresent context-specific conditional independencies. It can also
e used to model processes with structural zeros; albeit with
edundant parameters and some loss of graphical representation.
owever, generally, there is no easy way to embed structural
issing values within a BN model.
PGMs such as the probability decision graph (PDG) [35] and

cyclic probabilistic finite automata (APFA) [36] share some sim-
larities with CEGs when it comes to modelling asymmetric pro-
esses. While PDGs can represent asymmetric structures and
ome context-specific independencies, there are some symmetric
onditional independencies – that can be represented by BNs and
EGs – that they cannot represent.7 On the other hand, APFAs
an encode context-specific independencies but not asymmetric
tructures.
For a detailed comparison of CEGs and other asymmetric PGMs

sed for explanatory modelling, see Chapter 2 of Shenvi [10].

7 For instance, no PDG can represent the independence structure im-
lied by a BN with variables X = {X1, X2, X3, X4} and directed edges
X , X ), (X , X ), (X , X ) and (X , X ) [35]
1 2 1 3 2 4 3 4

4

.3. Bayesian learning

Since the transformation of a given staged tree model into its
orresponding CEG is deterministic, a CEG C is uniquely defined
y its staged tree S and the parameters over its staged tree,
S [37]. Hence, learning or model selection in CEGs is equivalent

o identifying the sets of stages in the event tree to obtain the
taged tree. The two main approaches to learning the stages in
n event tree are (i) the agglomerative hierarchical clustering
AHC) algorithm [6] and (ii) a brute-force approach using dynamic
rogramming [7,8]. Both of these are score-based algorithms
hat aim to maximise a chosen score function, typically the log
arginal likelihood of the model.
Within cegpy, we implemented the AHC algorithm as it is

omputationally efficient for moderate-sized event trees – which
e envision will be what the package will be used for – and at
resent, it is the most popular approach for applications involving
EGs. The AHC algorithm does not rely on structural symmetry
nd is directly applicable to the non-stratified class.
The AHC algorithm is a greedy, bottom-up hierarchical cluster-

ng algorithm. It begins with each situation in the event tree being
n its own singleton stage. Thereafter, at each step, it merges the
wo stages that give the highest improvement in terms of the
og marginal likelihood score. The algorithm terminates when the
core can no longer be improved by merging two stages. The
echnical details of the AHC and its associated pseudo-code are
resented in Appendix B in the supplementary material.
In cegpy, the input dataset is used for creating the event tree

nd for identifying the edge-counts along each of its edges. The
vent tree, edge-counts and user-defined or default priors over
he CPVs and stage structure are taken as inputs by the AHC
lgorithm to learn the staged tree/CEG and their parameters.

.4. Probability propagation

Given new data or observations about an individual, the pos-
erior distributions of the CPVs in a CEG can be updated under
he Bayesian framework. Under a naïve approach, this could be
ccomplished by obtaining the full joint distribution of the model
nd then revising the probabilities using Bayes’ Rule conditional
n the new observations. However, this approach is inefficient
nd does not scale well. Probability propagation8 refers to up-
ating these posterior distributions through local computations
irectly on the graph of the CEG. The probability propagation
lgorithm for CEGs was given by Thwaites et al. [9].
Within the literature, new observations are also known as

‘evidence’’. For CEGs, evidence for a given individual is in terms
f the state occupied or the event experienced by an individual
nd this directly corresponds to a node or edge in the graph of the
EG. Evidence can be further classified as ‘‘positive’’ or ‘‘negative’’
nd as ‘‘certain’’ or ‘‘uncertain’’. We explain these classifications
ith the example below.

xample 5 (Falls Intervention (continued)). Consider the CEG in
ig. 1(b). Suppose that we observe an individual who has been as-
essed to be at a high risk of falling. This observation or evidence
an be stated in various distinct yet equivalent ways:

1. As positive and certain evidence: This individual is in
node w5 in the CEG.

2. As positive and uncertain evidence: To occupy w5, they
necessarily must have come along either edge (w1, w5,

‘High risk’) or edge (w3, w5, ‘High risk’) but it is not pos-
sible to say which one with absolute certainty.

8 Probability propagation in CEGs is similar to the case of BNs.
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3. As negative and certain evidence: This evidence can also
be stated as observing that this individual was assessed
(i.e. they are in either w5 or w6) and is not at a low risk
of falling (i.e. they are not in w6).

4. As negative and uncertain evidence: This evidence can
also be stated as observing that this individual was as-
sessed, so must have gone along one of (w1, w5, ‘High risk’),
(w3, w5, ‘High risk’), (w1, w6, ‘Low risk’) or (w3, w6,

‘Low risk’), and that they are not at a low risk of falling,
so could not have gone along the latter two edges.

ny negative evidence (i.e. of not being in a particular state or not
xperiencing a particular event) can always be written as positive
vidence which may be certain or uncertain depending on how it
s formulated as shown above. Further, the above evidence makes
he nodes w2, w4, w6, w8, w10 and any edges going into or out of
hese nodes redundant and can be safely excluded from the CEG.
he resultant simplified CEG is given in Fig. 6. The propagation
lgorithm then redistributes the probability mass through local
omputations on the remaining nodes and edges.

As demonstrated above, evidence leads to simplification of
he CEG under consideration. The simplified CEG obtained by
xcluding redundant nodes and edges is called the reduced CEG
or that evidence. Not all evidence is compatible with being used
y the probability propagation algorithm. Only intrinsic evidence
s compatible. Evidence is said to be intrinsic if the graph of its
educed CEG contains no more information than the evidence
uggests and it preserves the conditional independence relations
n the original CEG. This condition is trivially met when the
vidence is defined in terms of nodes and edges [33]. In Appendix
of the supplementary material, we provide an example of non-

ntrinsic evidence that is defined in terms of root-to-sink paths of
he CEG.

In the cegpy package, once a CEG is learned, the user can
pecify their evidence and then run the propagation algorithm
o update the graph and posteriors in the CEG. The evidence can
nly be specified in terms of nodes and edges, and so is always
ntrinsic. The evidence supplied must be positive but can certain
r uncertain. The technical details of the propagation algorithm
re given in Appendix D in the supplementary material.

. The cegpy package

cegpy is the first Python implementation of CEGs, the first
cross all languages to support structurally asymmetric processes
nd the first to support probability propagation. It is developed
sing a Bayesian framework which provides a structured way
o incorporate prior knowledge, to update the posterior as more
ata is received, and to perform modelling with a combination
f expert knowledge and data when working on problems with
imited data.

.1. Python implementation

cegpy is built in Python, and makes use of the open source
packages pandas, NetworkX, and GraphViz; see metadata in
ppendix E in the supplementary material. cegpy is designed to

harness the object-oriented functionalities of Python. The class
iagram in Fig. 2 shows the object-oriented inheritance structure
f the various classes in the package. The EventTree, StagedTree,
hainEventGraph and ChainEventGraphReducer (corresponding
o the reduced CEG after incorporating the evidence, see
ection 2.4) are all object classes. From the inheritance structure,
e can see that, for instance, the StagedTree class inherits the
eatures of the EventTree class and extends it. The EventTree class

5

and ChainEventGraph class inherit from the MultiDiGraph (di-
rected multi-graph) class of NetworkX which is a well-developed
and thoroughly tested package for studying graphs and networks
in Python.

The EventTree class is the entry-point for data into the pack-
age. It converts the input data into an event tree so that a
learning algorithm can be run on it to then create a StagedTree.
To construct the event tree, the EventTree object scans each row
of a column-based data set, and counts all the unique sequences
of events, i.e. paths, contained in it. This data is stored in a Python
dictionary, where each key in the dictionary represents an edge
(expressed as a path from the root up to that edge) in the tree,
and maps to the number of times that path has been observed in
the dataset which corresponds to the number of transitions along
that edge.

For example, consider the example dataset for the falls in-
tervention in Table 1. This is transformed into a dictionary like
so:

edges = {
("Community Assessed", ): 2,
("Community Not Assessed", ): 2,
("Community Assessed", "High Risk"): 1,
("Community Assessed", "Low Risk"): 1,
("Community Not Assessed", "High Risk"): 1,
("Community Not Assessed", "Low Risk"): 1,
("Community Assessed", "High Risk", "Referred and Treated"): 1,
("Community Assessed", "Low Risk", "Don’t Fall"): 1,
("Community Not Assessed", "High Risk", "Not Referred and Not

Treated"): 1,↪→

("Community Not Assessed", "Low Risk", "Not Referred and Not
Treated"): 1,↪→

("Community Assessed", "High Risk", "Referred and Treated",
"Fall"): 1,↪→

("Community Not Assessed", "High Risk", "Not Referred and Not
Treated", "Fall"): 1,↪→

("Community Not Assessed", "Low Risk", "Not Referred and Not
Treated", "Fall"): 1,↪→

}

By design, the paths are ordered alphabetically, which enables
consistent node-naming, even when the rows in the dataset are
reordered. Once the paths are determined, the edges dictionary
is used to create a NetworkX MultiDiGraph object, which is then
used as the data structure representation of the event tree.

As the StagedTree class inherits from the EventTree class,
the former is simply a special case of the latter. A StagedTree
object determines which nodes of the EventTree are in the same
stage and applies a colour scheme to them to show the dis-
tinct stages. Within cegpy, staged trees and CEGs have singleton
stages coloured in white, and leaves and sink nodes in light-
grey. The cegpy package contains an implementation of the AHC
algorithm described in Section 2.3 for identifying the stages from
the EventTree. Under a Bayesian framework, the algorithm is
initiated with a prior specification for each situation (i.e. each
initial singleton stage) in the EventTree. With the default settings
in cegpy, this is done using the approach of Collazo et al. [33]
whereby an imaginary sample size for the root (called alpha) is set
and this is then propagated uniformly through the EventTree. The
default imaginary sample size is given by the maximum number
of edges emanating out of any situation in the EventTree. Further,
cegpy also supports specification of priors for the colouring of
the StagedTree (and thus, the structure of the ChainEventGraph)
by indicating which situations are allowed to be merged together.
This is done by specifying a hyperstage [19] which is a collection of
sets such that two situations cannot be in the same stage unless
they belong to the same set in the hyperstage. Under a default
setting in cegpy, all situations that have the same number of

outgoing edges and equivalent set of edge labels are in the same
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Fig. 2. Class diagram of the Python classes encoded in cegpy.
Table 1
An example dataset illustrating how the falls intervention data is stored.
Housing assessment Risk Treatment Fall

Community not assessed Low risk Not referred and not treated Fall
Community not assessed High risk Not referred and not treated Fall
Community assessed Low risk – Don’t fall
Community assessed High risk Referred and treated Fall
Table 2
A comparison of the three packages available for modelling with CEGs.
Package Language CEG class Learning algorithms Propagation

ceg R Stratified only Bayesian ✗

stagedtrees R Stratified only Frequentist ✗

cegpy Python Stratified and non-stratified Bayesian ✓
t
c
t
i
T
E
t
c
t
t

4

c
p
r

set within the hyperstage. Note that users can specify their own
prior, imaginary sample size or hyperstage.

The AHC implementation is run within the StagedTree object
nd it is parallelised for efficiency. Once the stages have been
dentified, a ChainEventGraph object can be created by passing
he StagedTree as input. The ChainEventGraph object merges
he nodes that are in the same position. To do this, it uses the
ransformation algorithm described in Shenvi and Smith [37].
egpy also includes an implementation of the probability prop-
gation algorithm described in Section 2.4. In order to propagate
vidence through a CEG, the ChainEventGraphReducer object is
irst instantiated from the ChainEventGraph object. Evidence can
e specified to this object in terms of the nodes and edges as
ertain or uncertain evidence. Once all the evidence has been
pecified, the reduced CEG graph is created and the corresponding
osteriors are updated within a new ChainEventGraph object.

.2. Related work

There are two previous packages that can learn and visualise
EGs from data. The R package ceg [21] was the first package to
o so. This package implements the AHC for Bayesian learning in
EGs. In 2021, the R package stagedtrees [22] was released,
hich included several score-based and clustering-based algo-
ithms for non-Bayesian learning in CEGs such as hill-climbing,
ackward hill-climbing and k-means. Whilst both these packages
re able to represent context-specific conditional independen-
ies, neither are able to fully represent asymmetric structures,
.e. non-stratified staged trees and CEGs. Therefore, neither of
hese packages can be used to model processes with asymmetri-
al unfolding of events such as those described in Section 2.1; see
xamples in Appendix F in the supplementary material. cegpy
fills this gap (see Table 2).

6

The path-based approach of cegpy is in contrast to the
column-based approach of the other CEG packages, ceg and
stagedtrees. In the former approach, all the data is associated
with edges of the event tree and it corresponds to using events
as the building blocks of the model. It can routinely handle non-
stratified CEGs. On the other hand, the column-based approach
associates the data to the variables of the model and to their
corresponding state spaces. This approach makes it extremely
difficult to model non-stratified CEGs. For instance, the structural
missing values associated with the Treatment variable for indi-
viduals who are not assessed cannot be recorded easily within
the column-based approach. An alternative is to create a new
category for the Treatment variable called ‘‘Not referred & not
treated’’ which then renders the counts on the other categories of
this variable into structural zeros leading to redundancies in the
parameters and loss of representation.

Finally, Python’s object-oriented architecture lends itself well
o extensibility. The functionality and CEG classes supported by
egpy can be easily built upon using inheritance. For example,
o create a new class of CEGs in cegpy with arbitrary hold-
ng time distributions (such as in Barclay et al. [38]), a new
emporalEventTree class can be created which inherits from the
ventTree class and extends it to handle the holding times in
he input dataset. Similarly, a TemporalStagedTree class can be
reated such that it inherits the initialisation and functions from
he TemporalEventTree class as well as just the functions from
he StagedTree class.

. An illustrative example

In this section, we illustrate the key functionalities of the
egpy package through the analysis of a structurally asymmetric
rocess. We revisit the public health intervention to reduce falls-
elated injuries and fatalities among the elderly as described in
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xample 1. We use the synthetic dataset simulated by Shenvi
t al. [4] and provided with the supplementary material. Note
hat illustrations and guidance for the full range of functionalities
upported by cegpy can be found at https://cegpy.readthedocs.io.

4.1. Creating the event tree

The Falls dataset provides information concerning adults over
the age of 65, and includes the following four categorical vari-
ables:

• Living situation and whether they have been assessed, state
space: {Communal Assessed, Communal Not Assessed, Com-
munity Assessed, Community Not Assessed};

• Risk of a future fall, state space: {High Risk, Low Risk};
• Referral and treatment status, state space: {Not Referred &

Not Treated, Not Referred & Treated, Referred & Treated};
• Outcome, state space: {Fall, Don’t Fall}.

Recall from the description in Example 1 that this process has
structural asymmetries. None of the individuals assessed to be
low risk are referred to a falls clinic and thus, for this group,
the edge count associated with the ‘Referred & Treated’ category
is a structural zero. Moreover, for individuals who are not as-
sessed, their responses are structurally missing for the referral
and treatment variable.

Observe that since cegpy constructs the event tree by creating
dictionary of the paths in the input dataset, there is no need

o specify structural zeros as they do not occur in the dataset.
n the other hand, we encode structural missing values in the
ataset as NaNs. For example, a NaN value in the column relating
o the referral and treatment variable is interpreted by cegpy as
structural missing value.

rom cegpy import EventTree
mport pandas as pd

f = pd.read_excel(’Falls_Data.xlsx’)
rint(df.head(5))

utput:
HousingAssessment Risk Treatment Fall

Community Not Assessed Low Risk NaN Fall
Community Not Assessed High Risk NaN Fall
Community Not Assessed Low Risk NaN Don't Fall
Community Not Assessed Low Risk NaN Don't Fall
Community Not Assessed Low Risk NaN Fall

The event tree can be constructed from the falls dataset by
nitialising an EventTree object using the code given below and
s shown in Fig. 3.

t = EventTree(df)
t.create_figure()

Note here that any paths that should logically be in the event
ree description of the process but are absent from the dataset
ue to sampling limitations would need to be manually added
y the user using the sampling_zero_paths argument when ini-
ialising the EventTree object. Further, not all missing values
n the dataset will be structurally missing. To demarcate the
ifference, a user can give different labels to the structural and
ampling missing values in the dataset and provide these labels to
he struct_missing_label and missing_label arguments respectively
hen initialising the EventTree object.
7

Fig. 3. Event tree output for the falls dataset. Edge labels include the
edge-counts.

4.2. Creating the staged tree

To create a staged tree for the falls intervention, we initialise
a StagedTree object with our dataset as the input. Note that it is
not necessary to first initialise an EventTree object. To create a
staged tree, we must first identify the stages in the event tree.
We do this by running the AHC algorithm within the StagedTree
object. The code and output below show the default settings of
the hyperstage, alpha (imaginary sample size at the root, see
Section 3.1) and prior for the falls dataset. The priors and pos-
teriors are saved as fractions to maintain accuracy through the
iterative calculations.

from cegpy import StagedTree
st = StagedTree(df)
print(’default hyperstage:’,st._create_default_hyperstage())
print(’default alpha:’,st._calculate_default_alpha())
print(’default prior:’,

st._create_default_prior(st._calculate_default_alpha()))

Output:
default hyperstage: [[’s0’], [’s1’, ’s2’, ’s3’, ’s4’], [’s5’,

’s9’],↪→

[’s6’, ’s10’],[’s7’, ’s8’, ’s11’, ’s12’, ’s13’, ’s14’, ’s15’,
’s16’,↪→

’s17’, ’s22’, ’s23’, ’s24’, ’s25’, ’s26’]]
default alpha: 4

https://cegpy.readthedocs.io
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e

efault prior: [[Fraction(1, 1), Fraction(1, 1), Fraction(1, 1),
raction(1, 1)],[Fraction(1, 2), Fraction(1, 2)], [Fraction(1,

2),↪→

raction(1, 2)],[Fraction(1, 2), Fraction(1, 2)], [Fraction(1,
2),↪→

raction(1, 2)],[Fraction(1, 6), Fraction(1, 6), Fraction(1,
6)],↪→

Fraction(1, 4),Fraction(1, 4)], [Fraction(1, 4), Fraction(1,
4)],↪→

Fraction(1, 4),Fraction(1, 4)], [Fraction(1, 6), Fraction(1,
6),↪→

raction(1, 6)],[Fraction(1, 4), Fraction(1, 4)], [Fraction(1,
4),↪→

raction(1, 4)],[Fraction(1, 4), Fraction(1, 4)], [Fraction(1,
12),↪→

raction(1, 12)],[Fraction(1, 12), Fraction(1, 12)],
[Fraction(1, 12),↪→

raction(1, 12)],[Fraction(1, 8), Fraction(1, 8)], [Fraction(1,
8),↪→

raction(1, 8)],[Fraction(1, 12), Fraction(1, 12)],
[Fraction(1, 12),↪→

raction(1, 12)],[Fraction(1, 12), Fraction(1, 12)],
[Fraction(1, 8),↪→

raction(1, 8)],[Fraction(1, 8), Fraction(1, 8)]]

We now run the AHC algorithmwith the above default settings
sing the code below and generate the associated staged tree
hown in Fig. 4. Additionally, a user can specify a list of colours or
alette to be used in the staged tree and its corresponding CEG.
n this example, we have used a colourblind-friendly palette as
hown by the colours list below.

olours =
[’#BBCC33’,’#77AADD’,’#EE8866’,’#EEDD88’,’#FFAABB’,’#44BB99’]↪→

t.calculate_AHC_transitions(colour_list=colours)
t.create_figure()

.3. Creating the chain event graph

Once the stages have been identified by running the AHC
lgorithm on the StagedTree object, we can initialise a Chain-
ventGraph object that takes the StagedTree object as an input.
sing this StagedTree object, the ChainEventGraph object can
enerate the CEG figure using the code below and as shown in
ig. 5.

rom cegpy import ChainEventGraph
eg = ChainEventGraph(st)
eg.create_figure()

.4. Probability propagation on the chain event graph

Finally, we demonstrate how cegpy can be used for proba-
ility propagation on a given CEG after observing some evidence
ssociated with it. Suppose that we have observed an assessed,
igh risk individual. This is equivalent to observing the node w5
n the CEG in Fig. 5 with certainty. The CPVs associated with the
EG can be updated in light of this evidence by first initialising
ChainEventGraphReducer object with the CEG as the input and
hen adding the certain evidence as shown in the code below.
he graph and means of the updated CPVs are given in the
educed CEG in Fig. 6. We can see that based on this observation,
he probability that the observed individual is from a communal
stablishment is updated from 0.04 (sum of communal assessed
nd communal not assessed) to 0.15.

rom cegpy import ChainEventGraphReducer
ceg = ChainEventGraphReducer(ceg)
ceg.add_certain_node(’w5’)
ceg.graph.create_figure()
8

Fig. 4. Staged tree output for the falls dataset with default priors.

We can also use cegpy to propagate uncertain evidence.
Suppose now that we observe individuals who had been treated
but they still suffered a fall. These individuals must have passed
through one of the following sequences of edges in the CEG in
Fig. 5: (i) (w5, w9, ‘Not Referred & Treated’) and (w9, w∞, ‘Fall’);
ii) (w5, w9, ‘Referred & Treated’) and (w9, w∞, ‘Fall’); or
(iii) (w6, w10, ‘Not Referred & Treated’) and (w10, w∞,

Fall’). To simplify, this is equivalent to having uncertain evidence
bout nodes w9 and w10, and about the edges (w9, w∞, ‘Fall’)
nd (w10, w∞, ‘Fall’). As earlier, we first initialise a ChainEvent-
raphReducer object with the CEG as the input and add both
ets of uncertain evidence as shown in the code below, and thus
btain the updated graph and CPVs shown in Fig. 7.

rom cegpy import ChainEventGraphReducer
ceg = ChainEventGraphReducer(ceg)
ceg.add_uncertain_node_set({"w9", "w10"})
ceg.add_uncertain_edge_set_list([{(’w9’,ceg.sink, ’Fall’),

(’w10’, ceg.sink, ’Fall’)}])
ceg.graph.create_figure()

. Discussion

cegpy is an open-source Python package that facilitates mod-
lling with staged trees and CEGs, providing functionality for
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Fig. 5. CEG output for the falls dataset. Edge labels show means of the CPVs.
Fig. 6. CEG output for the falls dataset after propagating the observation of node w5 , i.e. individuals who are assessed and are high risk.
Fig. 7. CEG output for the falls dataset after propagating the uncertain evidence over the nodes: w9 , w10 and over the edges: (w9 , w∞ , Fall), (w10 , w∞ , Fall).
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ayesian learning and probability propagation. This package is
he first implementation of staged trees and CEGs in Python, and,
nlike previous implementations in R that focus only on the strat-
fied class, cegpy’s functionality extends to the non-stratified
lass. Further, it is the first package that provides support for
robability propagation. Therefore, cegpy can support users with
ategorical data to create models of processes with structural
symmetries, which can be analysed to understand complex de-
endence structures. We discuss below a few avenues for greatly
nhancing the current functionality of cegpy9
In the current version of cegpy, we have focused on Bayesian

ethods. However, it is straightforward to implement classical
ethods such as those in the stagedtree package and we plan

o do this in a future version. Moreover, currently cegpy only
provides support for the AHC algorithm. Other existing Bayesian
learning algorithms have considerable drawbacks: dynamic pro-
gramming [7] is computationally infeasible for all but the smallest
of data sets. Further research is needed to explore computa-
tionally efficient Bayesian learning techniques for CEGs. Strong
and Smith [39]’s work on Bayesian model averaging using a
modification of the AHC algorithm has been implemented as
an extension to cegpy (see https://github.com/peterrhysstrong/
cegpy_BMA) and we plan to make this available in a future
version of the package.

As described in Section 3.2, cegpy uses a path-based approach
to construct the event tree. Thereby, sampling zeros paths are not
automatically filled in for unobserved combinations of variables.
Currently, users must add these paths manually. Filling in of

9 Contributions on https://github.com/g-walley/cegpy are always welcome.
9

sampling zero paths can be automated by assuming that the tree
is stratified. This can be added as an argument for the EventTree
class to create these paths at the point of initialisation.

Finally, for the purposes of expert elicitation, it would be
extremely useful to enable a user to directly specify an event
tree, staged tree or CEG structure – with colouring and possibly,
with parameters – in the cegpy package. Of course, learning
algorithms cannot be used due to the absence of data but it
would be beneficial for visualisation and evidence propagation.
We are currently looking into adding this functionality by di-
rectly importing graphs specified using the DOT language used
by GraphViz.
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We have included the data (titled ’Falls_Data.xlsx’) as a sup-
lementary file. The code used in the analysis of this dataset is
rovided in the main article itself
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